
Externalities of Climate Adaptation in
Common-Pool Groundwater Resources*

Jeffrey Hadachek†, Ellen M. Bruno‡, Nick Hagerty§, and Katrina Jessoe¶

April 15, 2025

Abstract

Adaptation to environmental change can exacerbate existing externalities in common-pool
natural resources. We document one such case: Farmers in California respond to heat and
drought by extracting more groundwater, lowering the water table, and harming access to
drinking water for nearby residents. Using yearly variation we show that surface water scarcity
and heat increase agricultural well construction, groundwater depletion, and domestic well
failures, and that well construction accounts for a large share of the latter effects. In our setting,
adaptation also exacerbates inequality: Effects on domestic well failures are concentrated in
low-income and Latino communities.
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1 Introduction

Market failures attributable to the open-access management of common-property resources are
widespread. Open-access management, which is common in resources such as fisheries, forests,
and groundwater, is typically inefficient because each user acts without fully considering the costs
of extraction to others (Hotelling, 1931; Gordon, 1954; Stavins, 2011; Hartman, 2018). A rich em-
pirical literature confirms that open-access conditions lead to too much resource extraction at too
quick a pace (Newell, Sanchirico, and Kerr, 2005; Costello, Gaines, and Lynham, 2008). But less
clear is how these open-access externalities are affected by climate change (Taylor, 2023). These
externalities may be exacerbated by adaptation choices: Natural resource stocks are often valuable
for buffering weather shocks, so in open access, users may over-rely on them, exacerbating existing
externalities. If so, environmental change can raise the value of sound resource management.

This paper empirically documents an important case in which private actors’ responses to
weather shocks exacerbate existing market failures in natural resource management. Our context is
groundwater in California, a natural resource that provides irrigation for agricultural production as
well as drinking water for rural households. Nearly all agriculture in California is irrigated, from
both surface water sources (delivered via canals and rivers) and groundwater (pumped locally from
wells). As in most other parts of the United States and the world, groundwater extraction in Cal-
ifornia is largely unregulated and unmonitored (Edwards and Guilfoos, 2021). The vast majority
of this extraction is used for irrigation, and many areas that depend heavily on groundwater have
experienced falling water levels, increasing pumping costs, and degraded water quality (Pfeiffer
and Lin, 2012; Merrill and Guilfoos, 2017; Department of Water Resources, 2020, n.d.; Ayres,
Meng, and Plantinga, 2021).

One important consequence of groundwater depletion is that it can harm access to drinking
water for rural households that rely on private groundwater wells for domestic purposes. Domestic
wells tend to be shallower than agricultural wells, and therefore, more susceptible to failing (i.e.,
running dry) as groundwater tables fall. In California, the shallowest domestic wells are also
concentrated in disadvantaged communities comprised of low-income households and people of
color.1 Access to drinking water supplies among disadvantaged communities is a growing concern,
and the links between environmental conditions, agricultural groundwater extraction, and domestic

1California’s San Joaquin Valley contains the majority of domestic wells in the state. It is a region that is over 50%
Latina/o and contains some of the highest rates of poverty and food insecurity in the state.
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well failures remain unclear (Pauloo et al., 2020).
Our overall thesis is that open-access conditions lead farmers in California to respond to

heat and drought by increasing groundwater extraction, which leads to declining water stocks
and harms access to drinking water in low-income and Latina/o communities. We build the case
for this thesis through several steps of empirical analysis. First, we study how environmental
conditions affect the outcomes that carry costs, showing that heat and surface water scarcity cause
groundwater levels to decline more rapidly and domestic wells to fail more often. Then, we provide
evidence that these damaging effects are due in part to adaptation actions taken by agricultural
producers. Because data on groundwater extraction itself is unavailable, we focus on the extensive
margin, showing that the construction of new agricultural wells speeds up in response to heat and
water scarcity.2 Finally, we argue that the remaining steps in the causal chain are mechanical, and
we use known physical relationships to quantify the contribution of the extensive margin to overall
damages.

Our empirical approach uses year-to-year variation that differs across locations to identify
the effects of contemporaneous and past surface water scarcity and high temperatures on ground-
water levels, domestic well failures, and agricultural well construction. We build a geocoded well-
level dataset spanning 28 years that is comprised of more than 180,000 domestic and agricultural
wells and, on average, about 20,000 groundwater monitoring wells. We combine these data with
district-level weather and surface water supply data from about 400 water districts between 1993
and 2020. Because farmers and their water districts have some ability to influence their surface
water, we instrument for surface water deliveries using water allocation rules that are set annually
by regulators based on environmental conditions. This empirical approach is similar to that of a
shift-share instrument, in which the identifying variation comes from temporal shocks that differ-
entially affect farmers across regions. Two-way fixed effects control for local fixed differences
(such as historical water rights) and state-level shocks (such as recessions) that may affect both
water access and producers’ decisions.

Our research design measures the consequences of adaptation to transient shocks, not of
adaptation to long-term shifts in environmental conditions.3 We make this choice because of the

2Ongoing work focuses on using electricity consumption to quantify the intensive-margin response attributable to
weather shocks (Oehninger, Lawell, and Springborn, 2017; Hrozencik, Rouhi Rad, and Uz, 2023).

3In the framework of Lemoine (2023), the responses we study are primarily a combination of contemporaneous
and ex-post adaptation to realized but unforecasted shocks in temperatures and surface water. Ex-post adaptation refers
to how farmers respond to past weather; whereas, ex-ante adaptation captures how farmers respond in anticipation of
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econometric challenges involved in isolating true adaptation to climate change, and much of the
existing literature on climate adaptation makes a similar choice (Deschênes and Greenstone, 2007;
Dell, Jones, and Olken, 2012; Blanc and Schlenker, 2017). Still, we argue that our results carry
implications for climate change in the same way that the weather impacts literature does more gen-
erally. If agricultural producers exacerbate groundwater depletion in response to heat and drought
now, then they are likely to also do so in response to an increase in the frequency of heat and
drought. This distinction is not crucial for our main point: that the ways producers respond to
changes in environmental conditions can exacerbate existing negative externalities.

Our first result is that contemporaneous surface water scarcity and extreme heat cause
groundwater levels to fall more rapidly than usual. To put our estimates into quantitative context,
we scale them to the magnitude of a recent drought in 2021. Our results indicate that surface wa-
ter scarcity equal to average scarcity in 2021—0.7 acre-feet (AF/acre) less than average—causes
groundwater levels to fall by 2 ft more than usual in the same year. The effect of this one-year
shock persists over time, with groundwater levels dropping an additional 19% more than usual in
the subsequent three years. Heat exposure equal to 2021 levels—23 harmful degree days (HDD)
more than average—causes groundwater levels to fall by 0.7 ft (8 in) more than usual.

Our second result is that surface water scarcity and extreme heat increase the rate at which
domestic wells fail. We estimate that the surface water scarcity and extreme heat experienced dur-
ing the 2021 drought raised the share of domestic wells that failed in the same year by 4 and 5
percentage points, respectively. A back-of-the-envelope calculation using the replacement costs
of these dry wells suggests potential externalities of $30.4 million from surface water shocks and
$34.3 million from excess heat of the magnitude experienced in 2021. Importantly, we find that
the overwhelming majority of domestic well failures occur in low-income communities and com-
munities of color. Because well failures are known in hydrology to be a mechanical result of
declining groundwater levels (Pauloo et al., 2020), we can say that heat and drought result in faster
groundwater depletion, which causes large numbers of domestic wells to fail, and the costs are
concentrated in communities that are already disadvantaged.

After showing that environmental shocks harm groundwater levels and drinking water ac-
cess, we turn to establishing a mechanism. Our third result is that both surface water scarcity and
extreme heat increase the number of new agricultural wells constructed. Contemporaneous surface
water scarcity equivalent to the 2021 drought results in 321 additional new agricultural wells per

future weather based on forecasts.
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year, a 32% increase in well construction relative to the usual pace. This additional agricultural
well drilling costs California farmers roughly $24 million in construction costs. Past surface wa-
ter shocks also impact contemporaneous drilling decisions. The incorporation of three-year lags
in surface water shocks increases new well construction from a 1 AF/acre reduction in surface
water by 31%. To understand the final link in the causal chain—how new wells affect groundwa-
ter depletion—we lay out a simple conceptual framework that decomposes the observed effect on
groundwater levels into three channels: the intensive margin response (extracting more per well),
the extensive margin response (building more wells), and recharge. Using this model and our
empirical estimates, we estimate that 25% of the effect of surface water scarcity on groundwater
levels operates through the extensive margin of agricultural well construction. Since an observable
choice variable of producers accounts for a substantial share of the damaging effects of environ-
mental shocks, our results imply that adaptation can carry external costs.

One central contribution is to bring empirical evidence to bear on how climate change is
likely to affect externalities from the open-access management of common-pool resources. The
expansion of irrigation is a frequently discussed strategy for agriculture to adapt to warming tem-
peratures and more variable water supplies (Rosenzweig and Parry, 1994; Mendelsohn and Dinar,
2003; Hornbeck and Keskin, 2014; Zaveri and Lobell, 2019). Recent empirical work has focused
on the link between climate and agricultural demand for water, showing increases in irrigation
as farmers seek to buffer against warming temperatures and more variable precipitation (Taraz,
2017). Less well understood is the extent to which climate change adaptation will affect exist-
ing groundwater extraction externalities (Taylor, 2023). Our findings show that the externalities
from groundwater consumption are exacerbated by the types of environmental conditions likely
to worsen under climate change, increasing the value of sound resource management. In short,
groundwater management policy is climate adaptation policy.

Our work also illustrates a case in which climate adaptation can produce external costs
that are quantitatively important for understanding the full costs of climate change. Efforts to
quantify the social costs of climate change must estimate not only the direct effects of weather
shocks and the extent to which adaptation can reduce these damages (Barreca et al., 2016; Burke
and Emerick, 2016), but also the cost of adaptation (Carleton et al., 2022; Hultgren et al., 2022).
If agents adapt in part by offloading costs to other parties without their consent, as they do in
our setting, then profit-maximizing behavior will result in more adaptation than is socially optimal.
This has been examined in the energy space (Auffhammer and Aroonruengsawat, 2011a; Davis and
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Gertler, 2015; Auffhammer, 2022).4 It is also the case in Abajian et al. (2024b), which shows that
catastrophic drought policies in Cape Town, South Africa led wealthier households to adopt private
groundwater wells as a substitute for piped water, imposing fiscal and environmental externalities
on other municipal water users. Our work complements these recent case studies, showing that
across a large geographic range, agricultural users’ response to frequent but severe surface water
shortages imposes external costs within and across sectors. Our work suggests that an accounting
of climate damages that ignores externalities will yield an over-optimistic view of the scope for
adaptation and understate the costs of climate change.

Finally, this paper adds a new dimension to our understanding about inequities in exposure
to environmental costs (Banzhaf, Ma, and Timmins, 2019). A recent literature documents that
disadvantaged communities bear a disproportionate burden of pollution and seeks to identify the
distributional implications of environmental regulations intended to reduce pollution (Cain et al.,
2023). This work highlights trends in pollution disparities over time and decomposes the relative
contribution of command-and-control and market-based approaches in explaining changes in this
gap (Fowlie, Holland, and Mansur, 2012; Bento, Freedman, and Lang, 2015; Shapiro and Walker,
2021; Hernandez-Cortes and Meng, 2023). Less is known about the equity implications of an
open-access management regime, which governs many common-pool resources.5 Our work shows
that adaptive behaviors under open-access management can exacerbate inequities when those with
access to capital impose costs on disadvantaged groups.

2 Agriculture and Water in California

The context we study is California, a setting where agriculture accounts for 80% of consumptive
water use, droughts are increasingly frequent and severe, and access to reliable drinking water sup-
plies poses a concern in many rural communities. California is a leading producer of agricultural
products in the U.S. and globally, comprising over a third of the nation’s vegetables and almost
three-quarters of its fruits and nuts (California Department of Food and Agriculture, 2020). One

4Heat-driven increases in energy consumption may lower private costs but impose external costs through increased
carbon emissions (Auffhammer and Aroonruengsawat, 2011b; Davis and Gertler, 2015; Colelli et al., 2022). While
energy use may increase in some locations, in other locations warming temperatures will decrease demand for cooling.
At a global scale, climate change is expected to lead to decreased energy demand, and subsequently, negative climate
adaptation feedback (Abajian et al., 2024a; Rode et al., 2021).

5Recent work highlights the net benefits of markets relative to open-access management in the context of California
groundwater (Ayres, Meng, and Plantinga, 2021).
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reason for the state’s large market share in agricultural production is irrigation. Almost all agri-
cultural acres are irrigated, with over half of the farms using a mix of surface and groundwater
sources.

Within the state, agricultural production is concentrated in the San Joaquin Valley (SJV) in
central California. The counties located in the SJV are primarily rural and experience some of the
highest poverty rates in the country. Many of these households use private domestic groundwater
wells for drinking water purposes. These domestic wells are relatively shallow, and as a result, are
vulnerable to weather-driven declines in groundwater levels.

Surface Water Irrigation

Surface water supplies, which account for approximately 60% of irrigation supplies in an average
year, exhibit substantial variation over time and across irrigation districts. Annual state-level sur-
face water supplies are largely determined by fall and winter precipitation in the Sierra Nevada and
other local mountain ranges. As the snowpack melts, this runoff is temporarily captured and stored
in reservoirs and later delivered to farmers and irrigation districts through a network of canals.
Large inter-annual swings in precipitation are endemic to California and lead to meaningful varia-
tion in surface water supplies from year to year.

A complex allocation system dating back to the early 1900s guides the assignment of water
across users, and introduces cross-sectional heterogeneity in surface water rights. A user, defined
as an irrigation district, holds an appropriative right to divert water directly from a nearby river
or stream and/or possesses a long-term contract to water deliveries provided by a state or federal
water project.6 The state-operated State Water Project and federally run Central Valley Project
and Lower Colorado River Project comprise the three main surface water projects. Water con-
tracts specify a maximum annual volume of water supplied and a contract priority. This array of
water rights and water projects dates back more than 40 years and created an entitlement system
where neighboring water districts obtain surface water from different sources under different con-
tract conditions. Figure A3 displays the differential entitlements to surface water across space by
plotting the maximum entitlement each region of California can receive each year.

Within an irrigation district, large fluctuations exist in yearly water project deliveries. Each

6Most agricultural water rights and contracts are held by irrigation districts – local government agencies – which
then supply water to farms within their jurisdictions. Within each district, water is typically rationed by quantity rather
than price, and by custom or law water is distributed uniformly to producers on a per-acre basis.
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year the government agency managing a water project announces allocation percentages for each
contract type. These percentages are based on weather and environmental conditions in the moun-
tains that occur in the preceding winter rainy season. Precipitation, usually in the form of snow,
melts in the spring and then runs off into reservoirs where it is stored for summer irrigation in the
Central Valley.7 There are 13 different contract types, where the allocation percentage a district
receives differs based on the water project and fixed priority order. As a result, within a year dif-
ferent districts receive different allocation percentages, depending on the contract type and their
appropriative water rights. Figure A4 plots the temporal variation in allocation percentages broken
down by each of the 13 projects.

The actual surface water deliveries that a district receives can differ from allocations in a
few ways. Irrigation districts can purchase additional water mid-season on the spot market, with-
draw water from groundwater banks, or reserve water for up to a year in response to environmental
conditions.

Groundwater Irrigation

Groundwater has traditionally acted as a buffer to fluctuations in surface water supplies. To
counter the reduced surface water supplies that accompany droughts, dependence on groundwater
increases, accounting for up to 80% of water supplies during droughts.

Historically, groundwater has been managed under an open-access regime, with agricultural
water use neither monitored, measured, nor priced. Owners of land have the right to drill wells
and pump groundwater with few restrictions. The open-access nature of groundwater has led to
declining groundwater levels, higher pumping costs, and other negative consequences (Provencher
and Burt, 1993; Brozović, Sunding, and Zilberman, 2010; Edwards, 2016). For example, in the
past 10 years groundwater levels in some SJV basins have experienced over a 100 foot reduction
(Department of Water Resources, n.d.). Partly in response to these concerns, California passed
historic groundwater regulation in 2014 - the Sustainable Groundwater Management Act (SGMA)
– with the aim to sustainably use and manage groundwater by 2042.8

To increase groundwater irrigation on the intensive margin, a producer simply pumps more

7The regional weather conditions that matter for determining these allocations are distinct from the local weather
conditions that may influence on-farm groundwater demand.

8Most SGMA sustainability plans were developed and implemented by local groundwater sustainability agencies
(GSA) starting in 2022, after our sample of study. There remain no direct restrictions on the drilling of groundwater
wells in these plans.
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water from an existing well. The main variable cost is the electricity required to power the well;
it scales roughly proportionally with both water quantity and depth. However, any single well
exhibits declining marginal yields in both pumping duration and power.

To increase groundwater irrigation on the extensive margin, a producer drills a new well.
He would do so either to irrigate more than existing wells can support, or if groundwater tables
fall below the depth of existing wells. The fixed cost of well construction varies widely based on
the completed drilled depth and intended use. Residential domestic wells are typically between
100 and 300 ft deep and cost approximately $10,000. Agricultural wells are drilled between 300
and 500 ft deep on average and cost about $75,000, but can cost upwards of $300,000 for high-
capacity and deep wells (California State Board of Equalization, 2023). The average depth of new
agricultural wells has increased by over 200 feet since 1950 (Figure A8), reflecting the increasing
investment that farmers are willing to make to secure groundwater access. Agricultural wells also
are drilled with a wider diameter than residential wells to allow for higher flow rates. Their lifespan
often exceeds 100 years. New wells are required to be reported to the state Department of Water
Resources (DWR) and are typically constructed in under a week (Central Valley Flood Protection
Board, 2020).

Drinking Water in Rural Communities

Most individuals in California receive residential and drinking water from community water sys-
tems, but many rural communities obtain drinking water directly and exclusively from private
domestic wells.9 Private domestic well users draw groundwater from aquifers that are shared with
agricultural users. Compared with agricultural wells, domestic wells are typically shallower and
therefore more susceptible to failing, or running dry, as groundwater tables decline. Dry wells im-
pose substantial costs on households, either through the costly construction of new, deeper wells
or the regular purchasing of alternative water sources, like bottled water.10

Private domestic wells are concentrated in agricultural regions of California and the San
Joaquin Valley in particular (see Figure A1). These areas also comprise some of the most eco-
nomically and socially vulnerable communities in California (see Figure A2). Populations in the

9Community water systems are public water systems with over 15 connections and serve more than 25 people.
Between 3.4 and 5.8% (or 1.3 to 2.25 million) of Californians use private domestic wells (Pace et al., 2022)

10Deteriorating drinking water quality is also a concern for many of these users, especially since these water sources
are outside the jurisdiction of the Safe Drinking Water Act.
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San Joaquin Valley are 50.2% Hispanic (compared to a national average of 18.9%) and 23.2% of
households are below the federal poverty line (compared to a national average of 12.9%). Fur-
ther disparities exist within the domestic well-owning population. Figure 1 illustrates that lower
income, less white, and more agricultural communities tend to have domestic wells that are about
20 to 40 feet shallower on average. Shallower wells are the most vulnerable to well failures from
declining groundwater levels. This figure also highlights that among domestic well users, private
well failures are concentrated in relatively low income, rural and non-white communities.

Impacts of Climate Change in California

Water scarcity in California is expected to be exacerbated by climate change. While climate mod-
els project only modest changes in the mean annual precipitation, the amount of water available in
reservoirs and canals for irrigation is projected to be reduced by 25% by 2060 (Wang et al., 2018).
The latter is partly due to increased precipitation volatility and insufficient infrastructure to con-
serve water in reservoirs in the wettest years (Diffenbaugh, Swain, and Touma, 2015; Swain et al.,
2018). Warming temperatures in the wintertime will shift the precipitation regime from snow to
rain, reducing natural storage (mountain snowpack) and increasing dependence on built infrastruc-
ture (Siirila-Woodburn et al., 2021). Warming temperatures also increase crop demands for water
during the summer growing season (Moyers et al., 2024). Even if surface water supplies do not
change, extreme heat will lead farmers to demand more water for irrigation (Rosa et al., 2020).

To date, the estimated impacts of climate change on California agriculture are mixed. The
earliest estimates ranged from negligible effects to profits of up to 15% (Mendelsohn, Nordhaus,
and Shaw, 1994; Deschênes and Greenstone, 2007). Others have estimated negative impacts
when accounting for water availability and crop quality, especially among fruits and vegetables
(Schlenker, Hanemann, and Fisher, 2007; Smith and Beatty, 2023). Historically, direct climate
damages have been mitigated through adaptive behaviors by farmers (Burke and Emerick, 2016;
Hagerty, 2021), including increased irrigation. These behaviors may explain why some earlier
studies calculated minimal damages. However, these mitigation channels may be unavailable in
the future either due to groundwater scarcity or regulation that curbs its over-use. This implies that
direct climate damages may be significantly worse in the future as water becomes more scarce.
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Figure 1: Domestic Well Depth and Failure Probability by Local Demographics

Note: Figure displays the mean well depth and probability of domestic well failure. Estimates and
95% confidence intervals are from a linear probability model, where well failure is regressed on
indicators for whether the census tract is above or below median values for socioeconomic and
agricultural measure. Demographic data for the Census tract in which each well is located come
from IPUMS NGHIS (Manson et al., 2022). “% Low-Income” is the percentage of households
with income below federal poverty thresholds set by the Census Bureau.
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3 Conceptual Framework

We develop a conceptual framework based in physics and hydrology to clarify the relationships
between farmers’ responses to heat and surface water, groundwater levels, and access to drinking
water. This framework will later inform an accounting exercise to quantify the intensive-margin
response to heat and surface water shocks despite the lack of data on groundwater extraction. We
start with a static set-up and then discuss a time element since these relationships have plausible
dynamic relationships.

Following Provencher and Burt (1993) and Hotelling (1931), our framework recognizes
that the absence of well-defined property rights generates open-access externalities. These can
take the form of stock, pumping and/or water quality externalities (Pfeiffer and Lin, 2012; Ayres,
Meng, and Plantinga, 2021; Merrill and Guilfoos, 2017). The focus of our framework is not to
quantify the magnitude of these externalities, but instead to demonstrate how resource stocks and
well failures respond to environmental shocks and quantify the relative importance of well drilling
in explaining this response.

Gross groundwater consumption for a representative farmer, denoted by C, is equal to the
product of the total number of wells w and the average amount of water pumped per well q. Farmers
choose the number of wells to construct and how much groundwater to pump from each well.
These decisions are functions of surface water (s) - a substitute for groundwater - and extreme heat
(h):

C(s,h) = w(s,h)×q(s,h) (1)

Groundwater consumption in a year affects the end-of-year water stock. If annual groundwater
consumption exceeds recharge R(s,h), then the stock of water in the aquifer declines and the depth
to the remaining groundwater stock increases. The depth to the water table (DTW ) is given by:

DTW (s,h) = DTW0 +κ
[
C(s,h)−R(s,h)

]
, (2)

which depends on the starting depth to the water table DTW0, consumption, and recharge. The
effect of one unit of consumption and recharge on the depth to the water table is a direct function
of the geological characteristics of the aquifer. This is captured by a constant multiplier, κ .11

11κ represents the inverse of storativity, a physical property of an aquifer. Groundwater aquifers are porous rock and
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Consider a shock that reduces surface water supplies by a marginal amount ds in a given
year (alternatively, a shock that increases exposure to heat by dh). The marginal change in DTW

that results from this shock can be decomposed into three channels:

dDTW
ds

(s,h) = κ
[∂w

∂ s
(s,h)×q(s,h)+

∂q
∂ s

(s,h)×w(s,h)− ∂R
∂ s

(s,h)
]
. (3)

First, farmers may drill new irrigation wells and pump from them (the extensive margin): ∂w
∂ s (s,h).

Second, farmers may extract more groundwater from existing wells (the intensive margin): ∂q
∂ s (s,h).

Third, recharge is affected, ∂R
∂ s (s,h), since if less total irrigation water is applied to cropland, less

water drains through the soil into the aquifer below.12

The logic extends to well failures, since they are a physically deterministic function of the
local groundwater depth (Pauloo et al., 2020). We can write the probability of well failure as
F = F(DTW ) = F(DTW (s,h)). When the local water table falls below the depth of a domestic
well, the well runs dry and fails. Thus, the share of wells that fail as the result of a surface water
shock is proportional to the effect on depth-to-water:

dF
ds

(s,h) =
∂F

∂DTW
∂DTW

∂ s
(s,h). (4)

Equations (3) and (4) allow us to quantify the margins of response to surface water and heat
shocks within a single year. They also enable us to empirically back out the intensive-margin effect,
even though groundwater extraction is not directly observable, because we observe or estimate the
other terms.

Dynamics

Given that groundwater wells require upfront costs to drill and have a long lifespan, the decision
to drill a well and the consequences of that decision are dynamic. One approach to characterizing

sediment formations that store groundwater. The volume of water an aquifer can hold varies depending on porosity
and sediment type. For highly porous aquifers, less total area is required to hold the same amount of water relative to a
less porous aquifer. For an unconfined aquifer like much of the Central Valley, storativity is also equivalent to specific
yield, which measures the proportion of space that water can occupy within an aquifer. As an example, a storativity
value of 0.12, which is typical in California’s Central Valley Aquifer (Department of Water Resources, 2020), indicates
that 12% of the volume of the aquifer can hold water. The other 88% is composed of porous rock and sediment.

12For a heat shock, recharge also falls because heat increases evaporation, meaning that less of the applied water
makes its way into the aquifer.
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this decision is to model well drilling as a forward-looking investment in which drilling decisions
depend on current weather realizations and farmer expectations about future groundwater stocks,
surface water supplies, and weather. The optimal drilling decision also depends on the existing
stock of wells and the option value of this well. Estimating how well drilling responds to beliefs
about the future climate would require exogenous variation in those beliefs, which is difficult to
find. We focus instead on a narrower question: how well drilling responds to contemporaneous
and recent shocks to environmental conditions.

Our goal is not to fully characterize the well drilling choice or how it responds to climate
and groundwater depletion. Instead, we seek to show qualitatively that well drilling does respond
to environmental shocks and that it is a quantitatively important mechanism for the effects of these
shocks on groundwater depletion. Although well drilling is likely driven more by expected future
conditions, temporary shocks are also important in our setting. First, relative to other agricultural
investments, well construction costs are low. The cost of drilling a well is less than 15% of the
establishment cost of a typical almond orchard in the Northern San Joaquin Valley (Goodrich
et al., 2024). Second, well drilling offers a short-run option to buffer high-value perennial crops in
California from within-year surface water scarcity and heat. Third, temporary shocks may carry
information about the future climate.

In Appendix A.1, we incorporate some dynamics into the decomposition above. We expand
equations (1-3) to allow for lagged effects of both weather on well drilling and of well drilling
on groundwater levels. The dynamic decomposition yields two additional margins of response
to a given weather shock: future groundwater consumption from wells constructed in response
to contemporaneous shocks, and contemporaneous well drilling from past weather shocks. This
framework still does not incorporate forward-looking choices; instead its purpose is to provide a
more complete accounting framework for quantifying the margins by which weather shocks affect
groundwater availability.

4 Data

Panel data on surface water deliveries and allocations, groundwater levels, and well construction
and failures form the primary dataset for this analysis. We supplement these data with additional
information on local weather. Table 1 provides summary statistics and lists the cross-sectional unit
of observation for each variable.
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Table 1: Summary Statistics

Unit Count Mean SD Min Max
Outcomes:
New Ag Wells DAUCO 10,416 11.1 19.4 0 316
Depth to Groundwater (ft) Monitoring Well 575,410 62.9 80.4 0 2,714.1
∆DTW Monitoring Well 575,399 0.3 6.1 -58.7 56.3
Probability of Domestic Well Failures Domestic Well 473,940 0.03 0.16 0 1
Independent Variables:
Ag SW Allocation (AF/crop acre) DAUCO 9,660 2.3 2.04 0 10
Ag SW Deliveries (AF/crop acre) DAUCO 10,416 2.2 1.9 0 10
Harmful Degree Days DAUCO 9,996 97.2 86.9 0 622.3
Growing Degree Days DAUCO 9,996 3,535.4 659.9 632.5 5,813.04
Annual Precipitation (mm) DAUCO 9,996 350.3 233.4 11.4 4,668.9
Crop Acres DAUCO 10,416 169,741.5 131,332.9 .2 502,692.3
Note: Table reports the number of observations, units of measurement, mean, standard deviations (SD), minimum, and maximum for each
outcome and explanatory variable. Mean and SD statistics are weighted by crop acres. Water is measured in acre feet per crop acre (AF/acre).

Surface Water Allocations and Deliveries

Panel data on surface water deliveries and allocations measure our covariate of interest, surface
water availability. These data were obtained from Hagerty (2021) and provide yearly measures of
water deliveries and allocations from the Central Valley Project (CVP), State Water Project (SWP),
Lower Colorado Project, and surface water rights from 1993-2020.13 We spatially aggregate these
data to geographic units called DAUCOs, the spatial intersection of DWR-defined “Detailed Anal-
ysis Units” (DAU) and counties (CO), and use the DAUCO as the unit of observation for surface
water deliveries, allocations, and agricultural well construction.14 Water allocations measure how
much water a DAUCO is slated to receive at the beginning of the year based on rights, contracts,
and that year’s snow pack and reservoir levels. Deliveries reflect how much water a DAUCO ac-
tually receives by the end of the year. Our final measure of surface water supplies captures the
volume of surface water delivered in AF per crop acre (AF/acre) in the DAUCO.15

Figure 2 displays the variation in surface water allocations across the 390 DAUCOs in

13Surface water delivery data for the CVP are first available from the U.S. Bureau of Reclamation in a digitized
format in 1993. Therefore, these variables determine the temporal length of our final panel for analysis.

14DWR uses DAUs to subdivide the state’s hydrologic regions and planning areas into smaller geographic areas for
agricultural land use and water balance analysis.

15We standardize water allocations and deliveries by dividing them by cropland acres in each DAUCO. There are a
number of reported extreme values of water allocations and deliveries, likely due to measurement error. To minimize
their influence, we Winsorize this variable at 10 AF/acre.
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three different years. In relatively wet years, such as 2006, each DAUCO receives 100% of its
water allocation. In drought years, such as 1994 and 2015, some DAUCOs experience water
curtailments based on contract types and seniority of rights. This occurs because of low levels
of precipitation and snow melt near each project’s reservoirs in the Sierra Nevada Mountains.
Adjacent water districts can receive very different allocations, and these differences in allocations
vary year to year.

Depth to the Water Table

Monitor-level measures of the depth to the water table are available from over 20,000 monitoring
wells on average between 1993 and 2020. Depth to the water table measures come from two
sources: the State Water Resources Control Board’s Groundwater Information System and DWR’s
Periodic Groundwater Level Measurement.16 Within each monitor-year, we select a single date to
measure the depth to the water table. We choose the reading closest to March 15 of the subsequent
year (e.g. March 15, 2016 to measure the 2015 end-of-year groundwater depth), since the water
table at that point in time will reflect the cumulative effects of groundwater pumping and recharge
in the preceding year. Year-to-year differences in monitor-level depth measure the change in the
depth to the water table.17

As shown in Table 1, groundwater levels decline by approximately 4 inches per year on
average. This statistic, however, masks substantial temporal and spatial heterogeneity in ground-
water levels. Figure 3 illustrates the change in depth to the groundwater in each DAUCO in three
different years. It makes clear that groundwater tables generally decline in the drought years 1994
and 2015, and replenish during wet years. Declines are most pronounced in location-years that
experience the largest surface water curtailments, with some regions experiencing annual declines
of over 10 feet.

16Figure A5 plots the location of each unique monitoring well in our sample and the boundaries of California’s prin-
ciple groundwater basins. This figures highlights that there is broad coverage of monitoring wells in the agricultural
centers of California, such as the San Joaquin Valley.

17To reduce the influence of extreme values, we exclude observations where a year-to-year change is more than 1.5
times greater than the inner decile range reported from all monitoring wells in the same DAUCO over our sample.
This rule removes observations with drastically different changes in groundwater levels than other local groundwater
measures. Some of these outlier observations are the result of a misplaced decimal, while other errors occur from
monitor errors, but we cannot easily distinguish the source of error in these data.
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Figure 2: Agricultural Surface Water Allocation Percentages

Note: Figure graphs the fraction of agricultural water entitlements to be received by
irrigation districts at the DAUCO level for three years: 1994, 2006, and 2015. Allocation
percentages, which are announced by the state prior to the growing season based on
environmental conditions, vary over space and time.
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Figure 3: Annual Changes in Depth to the Water Table

Note: Figure displays the average changes in depth to the water table within a DAUCO
for 1994, 2006, and 2015. During drought years like 1994 and 2015 areas in the San
Joaquin Valley experience large reductions in groundwater depth. Whereas, in wet years,
like 2006, those same areas experience small changes or even replenishment.
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Well Construction

We measure the extensive-margin response to surface water scarcity and extreme heat through the
metric of new agricultural well construction. We use the universe of Well Completion Reports from
DWR, which reports each new well’s location, the drilled well depth, intended use, and drilling
date. These reports also contain a record of which wells were destroyed and their locations.18 Our
final outcome is the count of the total number of new agricultural irrigation wells per DAUCO-year.
We also use the destruction records as an outcome in an alternative specification to test whether
new well construction is offset by old well destruction.

Figure 4 maps new agricultural well construction for the years 1994, 2006, and 2015. New
well construction varies from year-to-year and increases in drought years. This activity is also
concentrated in the San Joaquin Valley. A visual comparison of Figures 2 and 4 suggests that
well construction is more pronounced in location-years that experience the largest surface water
curtailments.

Well Failures

Panel data on domestic well failures at the well-year are available from 2014 to 2020. Beginning
in 2014, DWR created a system for households to report domestic well failures. Reporting in
this system is voluntary and there are no known differential incentives for reporting in certain
locations or years. When wells are reported dry, county-led emergency services are notified to
provide alternative water as a short-term solution. These data, shown on a map in Figure A6,
contain the coordinates for the reported dry well, the date the issue started, and if the issue was
resolved. Using the Well Completion Report data, we create a panel on the service status of
all domestic wells by geographically matching the reported failures to the registered domestic
wells. We denote a well-year as failed if a well failure is self-reported; otherwise we assume it is
functional. This is an undercount of the true number of domestic well failures, since household
reporting is voluntary. Still, it is an improvement over an approach that estimates failures based
on the relationship between well depth and groundwater table height, which risks misclassifying
wells for other reasons; for example, because they have been retired or because gaps in monitoring
data lead to prediction errors (Gailey, Lund, and Medellín-Azuara, 2019).

18Since 1949, the California Water Code requires that well drillers complete a Well Completion Report with the
California DWR within 60 days of the well construction and/or destruction. Prior to 2015, all Well Completion
Reports were handwritten and later digitized for the construction of this dataset.
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Figure 4: New Agricultural Well Construction

Note: Figure plots the count of new agricultural wells constructed at the DAUCO level
for three snapshots in time: 1994, 2006, and 2015. New agricultural well drilling is
predominant in the San Joaquin Valley.
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Since 2014, over 4,000 domestic well failures have been reported. The black outlined
region of Figure A6 illustrates that these well failures are concentrated in California’s San Joaquin
Valley. They also occur disproportionately in locations that experience large agricultural surface
water curtailments.

Weather

To measure extreme heat and precipitation we obtain weather observations from Schlenker and
Roberts (2009) and PRISM climate data. The former, which are based on PRISM, provide daily
temperature and precipitation data spanning 1993 to 2019 at a 2.5 km by 2.5 km grid. Given that
our panel extends to 2020, we obtain daily temperature and precipitation from the PRISM data
product, which measures these variables at a 4 km by 4 km resolution. For each day, we calculate
the average temperature and collect information on total precipitation.

As is the convention with panel data studies on climate change, we use daily average tem-
perature, T , to measure heat exposure and intensity over a calendar year in each grid using growing
degree days and harmful degrees (Blanc and Schlenker, 2017),

GDD(T ) =


0 if T ≤ 8C

T −8 if 8C < T ≤ 32C

24 if T ≥ 32C

(5)

HDD(T ) =

0 if T ≤ 32C

T −32 if T > 32C
(6)

Precipitation is measured as local annual precipitation in millimeters. We sum GDDs, HDDs
and precipitation over the calendar year to construct an annual measure of grid-level weather. To
construct a DAUCO-level measure of weather, we take the average of all grids whose centroid is
located in the DAUCO.
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5 Empirical Model

Our empirical framework uses annual fluctuations in local weather and surface water supplies to
empirically quantify the effects of these shocks on access to drinking and agricultural groundwa-
ter. We first test the prediction that heat and surface water scarcity will lead to declining water
availability as measured by changes in depth to the water table. We then evaluate the extent to
which declining water tables impact drinking water access by testing the reduced-form effects of
surface water scarcity and heat on the probability of well failure. Lastly, we empirically isolate
new agricultural well construction as one channel that explains declining water tables.

Changes in Depth to the Water Table

To evaluate the effect of heat and surface water scarcity on year-to-year changes in groundwater
levels, we use annual panel data to estimate a two-way fixed effects model,

∆DTWidt = β1SWDdt +β2HDDdt +B′Xdt +λt +αi + εidt . (7)

The dependent variable, ∆DTWidt , is the year-to-year change in the depth to the water table
for well i in DAUCO region d and year t. It measures the flow of groundwater levels at well i,
as opposed to the stock that is captured in the raw variable DTWidt . Specifying the outcome as
a flow better matches the treatment variables and avoids the risk of spurious correlation from the
non-stationary nature of the stock variable DTWidt . The underlying parallel trends assumption is
also more plausible for annual changes in groundwater depth. Trajectories of depletion vary across
locations for many reasons, so it is unrealistic to think that groundwater depths across locations
would move in parallel if exposed to the same values of the treatment variables. By differencing
the outcome, we allow for differential trends in depths, or equivalently, level differences in the
annual pace of depletion. We assume only that the pace of depletion across locations would follow
parallel trends absent differences in environmental conditions.

Our two regressors of interest are SWDdt and HDDdt . SWDdt measures surface water
deliveries in AF per crop acre in DAUCO region d and year t. Similarly, HDDdt is the annual
number of harmful degree days in DAUCO d and year t. The vector Xdt measures precipitation
and growing degree days; λt captures statewide annual shocks and trends; and αi absorbs fixed
well-level unobservables. Standard errors are clustered by DAUCO to account for serial correlation
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among wells within the same district.
To obtain estimates that represent average effects for agricultural regions of California even

though monitoring wells are not evenly distributed, we weight observations by the inverse number
of monitoring wells in the DAUCO times the crop area of the DAUCO. Weighting by the inverse
number of monitoring wells in the DAUCO moves from a dataset in which each well receives equal
weight to one in which each DAUCO receives equal weight, and then weighting by DAUCO crop
area moves to one in which each acre of crop land receives equal weight.

To incorporate dynamics, we expand the static specification to allow contemporaneous and
past surface water shocks and heat to impact changes in groundwater levels,

∆DTWidt =
b

∑
τ=0

β1τSWDdt−τ +
b

∑
τ=0

β2τHDDdt−τ +B′Xdt +λt +αi + εidt . (8)

All variables are defined as in equation (7), except our regressors of interest are now given
by the vectors SWDdt−τ and HDDdt−τ . These vectors capture contemporaneous and lagged surface
water deliveries and harmful degree days, respectively. The time horizon for the distributed lag is
defined over τ = [ 0,b], where τ = 0 corresponds to contemporaneous shocks and b denotes the
number of annual lags in the model. This specification tests for contemporaneous, β10 and β20, and
persistent effects, β1τ and β2τ when τ ∈ {1,b}, of environmental shocks. The cumulative effect of
surface water and heat shocks on groundwater levels over time horizon b is given by ∑

b
τ=0 β1τ and

∑
b
τ=0 β2τ .

Instrumental Variables Model

Of the two treatment variables in equation (7), HDDdt is likely exogenous, conditional on well and
year fixed effects and other measures of local weather. However, SWDdt may suffer from selection
bias, since irrigation districts can influence their own surface water deliveries. For example, in a
drought year, a district may purchase additional surface water, while its farmers also extract more
groundwater in drought years.

We therefore instrument for deliveries using surface water allocations. Surface water allo-
cations are the product of a district’s time-invariant maximum entitlement and a time-varying al-
location percentage. This variable is similar to a shift-share instrument, interacting cross-sectional
variation in maximum surface water supplies (shares) with temporal variation in overall water
availability (shifts). But it contains richer identifying variation than a simple shift-share instrument,
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because the shifts (i.e., the allocation percentages) themselves vary across regions and contract
types. Allocation percentages are set ahead of the growing season based only on environmental
conditions, not demand-related factors. The exclusion restriction likely holds, since allocations are
unlikely to be related to other determinants of local groundwater demand: Allocations are set based
on precipitation conditions occurring in the mountainous regions during the winter rainy season,
while groundwater demand occurs in agricultural valleys during the summer growing season. Still,
to rule out a possible correlation between local weather and allocations, we include precipitation
as a control variable in our full specifications.

Local heat shocks and surface water availability represent distinct environmental variables
of independent interest. It is true that in general, heat and drought are closely related, and reduced
water availability may itself be a consequence of rising regional temperatures. But in our setting,
water availability is determined by distant past weather, not local contemporaneous weather. Ta-
ble A2 shows that our two treatment variables contain independent variation. Local heat shocks
(i.e., harmful and growing degree days) are not statistically significant predictors of surface water
allocations, nor of deliveries when allocations are not also included in the regression.

Our initial specification is the following model:

∆DTWidt = β1 ˆSWDdt +β2HDDdt +B′X idt +λt +αi + εidt

SWDdt = γ1SWAdt + γ2HDDdt +Γ
′X idt +λt +αi +µidt ,

(9)

where the instrument SWAdt measures surface water allocations in DAUCO d and year t. The first-
stage relationship between allocations and surface water deliveries is strong, with an F-statistic that
exceeds conventional thresholds (Table A2).

Domestic Well Failures

Changes in the depth to the groundwater table may cause domestic wells to run dry. To estimate
the effect of heat and surface water scarcity on domestic well failures, we use well-level panel data
and again estimate an instrumental variables model with two-way fixed effects using two-stage
least squares:

Yidt = β1 ˆSWDdt +β2HDDdt +B′Xdt +λt +αi + εidt

SWDdt = γ1SDAdt ++γ2HDDdt +Γ
′Xdt +λt +αi +µidt .

(10)
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The outcome, Yidt , is now a binary variable indicating whether domestic well i reported
failing in year t. All other variables are defined as in equation (9), with the exception of αi which
denotes domestic well fixed effects. The coefficients of interest, β1 and β2, represent the change
in likelihood that a domestic well fails in a given year resulting from changes in surface water
availability and extreme heat, respectively. The regressions are weighted by the number of crop
acres in the DAUCO. Standard errors are clustered at the DAUCO level.

Agricultural Well Construction

Farmers may mitigate the costs of heat and surface water curtailments through increased ground-
water extraction on the intensive and extensive margins. For the extensive-margin response, we
estimate the effect on the count of new agricultural wells constructed. For this outcome, we use
Poisson regression, for which the feasible instrumental variables estimator is a control function
approach estimated with Psuedo-Poisson Maximum Likelihood (PPML) (Wooldridge, 2015),

E[Ydt |SWDdt ,HDDdt ,Xdt ,αd,λt ] = exp{β1SWDdt +β2HDDdt +B′Xdt +αd +λt +φ µ̂dt}

SWDdt = γ1SDAdt + γ2HDDdt +Γ
′Xdt +αd +λt +µdt .

(11)

The dependent variable is the non-negative count of new agricultural wells in DAUCO d and year t.
DAUCO fixed effects are captured by αd; all other variables are defined as before. The regression
is weighted by crop area in each DAUCO. Standard errors are clustered by DAUCO.

We use a Poisson model for this outcome because the parallel trends assumption is more
plausible in proportions than in levels. Consider two DAUCOs that are identical except that one is
twice as large as the other. A linear model would require the assumption that if two DAUCOs face
identical conditions of surface water and heat, any other time-varying factor adds the same number

of new wells to each DAUCO in that year. A Poisson model instead uses a more realistic “parallel
trends in ratios” assumption: absent differences in the treatment variables, background movements
in well construction would vary multiplicatively across DAUCOs rather than additively.19 Poisson

19This intuition is an informal generalization of the case of a binary variable and two periods, formalized by
Wooldridge (2023) and further explained by Chen and Roth (2023). The precise assumption in that case is that the
ratio of the expected values of the potential outcomes before and after treatment are equal between the treatment and
control groups. A linear regression with a log-transformed outcome would allow us to use a similar assumption but
is infeasible in our setting since the count of wells constructed can be zero. We also avoid “log-like” transformations
such as log(x+ 1) or the inverse hyperbolic sine because their estimates are sensitive to units and do not correspond
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regression is also arguably more appropriate for non-negative count data, and it may be more
efficient given the variable’s right skew (see Figure A7 for a histogram). For robustness, we also
report results using linear two-stage least squares.

6 Results

Damages: Groundwater Depletion and Well Failures

Table 2 reports results for the change in the groundwater depth from the two-way fixed effects
and instrumental variables models described in equations (7) and (9). Columns (1) and (2) display
the reduced-form effects of surface water allocations, without and with extreme heat and local
weather controls. Columns (3) and (4) display results in which allocations serve as an instrument
for surface water deliveries.

Our first main result is that surface water scarcity and extreme heat lead to groundwater
depletion. Our preferred estimates in column (4) of Table 2 imply that a 1-AF/acre reduction in
surface water deliveries leads to a 2.9 ft decline in the groundwater levels, holding local extreme
heat constant. Groundwater depth is responsive to extreme heat, with groundwater levels declining
by 0.03 ft for every additional harmful degree day. Even holding water supplies constant, an
increase in local extreme heat will directly increase demand for water resources. The reduced-form
effects reported in column (2) confirm the finding that surface water allocations have a negative
and significant impact on changes in the depth to the water table.

To provide context for the magnitude of these estimates, we consider the heat and surface
water scarcity experienced in 2021, a year that was especially hot and dry. In 2021, California crops
received an average of 1.5 AF/acre of surface water (0.7 AF/acre below average) and experienced
120 HDD (23 HDD above average).20 Our estimates suggest that the surface water curtailments of
2021 resulted in a 2 ft decline in groundwater levels, and the extreme heat experienced locally in
2021 resulted in a 0.7 ft decline in groundwater levels.

Having identified the contemporaneous effect, we next seek to estimate the cumulative

to a coherent estimand (Chen and Roth, 2023).
20For additional historical context on the size of typical shocks, we calculate the sample “within” standard deviation

by computing the standard deviation of surface water and heat for each DAUCO across time, and taking the average
across DAUCOs. A one “within” standard deviation change is equal to 0.54 AF/acre for surface water and 14 HDD
for extreme heat.
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Table 2: Changes in Depth to the Groundwater

Reduced Form IV

(1) (2) (3) (4)

Ag SW Allocation (AF/acre) -1.967 -1.533
(0.674) (0.636)

Ag SW Deliveries (AF/acre) -3.684 -2.914
(1.196) (1.174)

Harmful Degree Days 0.0308 0.0309
(0.0160) (0.0115)

Observations 561,085 560,931 561,085 560,931
N Groups 83,782 83,762 83,782 83,762
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface
(ft) from 1994-2020 at the monitoring well level. Columns (1) and (2) report results from
the reduced-form OLS model. Columns (3) and (4) report the second-stage IV results,
where agricultural surface water allocations are used as an instrument. All regressions are
weighted by the DAUCO crop acres divided by the number of monitoring wells and include
year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are
reported in parentheses.

effect of surface water shocks on groundwater stocks, as captured by dDTWT
dst

in equation (A4). To
estimate the cumulative effect, we first need to choose a time horizon T for the distributed lag
model presented in equation (8). In principle, new wells built in response to surface water scarcity
can affect groundwater depletion for many years after they are built. We choose T by estimating
a series of regressions that add lag terms in a stepwise fashion until the cumulative effect plateaus
(i.e., until neither of the last lags on surface water or harmful degree days is statistically significant).
Following this process, we choose a lag structure of three years (T = 4) (as shown in Table A6)
to estimate the cumulative effect of surface water shocks on groundwater levels. If surface water
scarcity affects groundwater depletion for more than four years, we will understate the cumulative
effect.
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Figure 5 plots the cumulative effect (i.e., the sum of contemporaneous and lagged coeffi-
cients) of a 1-AF/acre surface water shock on the depth to the water table in each of the four years
following the surface water curtailment.21 The pattern in Figure 5 indicates that surface water
scarcity causes the greatest decline in groundwater stocks in the year in which it occurs (T = 1),
and continues contributing to groundwater depletion for several more years. We attribute the lat-
ter to the persistent effect of surface water shocks on contemporaneous well construction and the
lasting effect of durable well construction on groundwater extraction. Similar to Table 2, the con-
temporaneous (year-1) effect of a 1-AF/acre reduction in surface water availability is a 3.1-foot
increase in groundwater depth. After that, effects of surface water shocks persist over time. The
cumulative change in groundwater levels continues to grow over time, increasing by almost 19%
or to 3.7 feet three years after the initial shock. Between the second and fourth years following a
surface water shock, groundwater levels decline by an additional 0.6 feet.

Next, we show results for well failures in Table 3, which reports results from a two-way
fixed effects linear probability model of domestic failures on heat and surface water scarcity.
Columns (1) and (2) present reduced-form effects of surface water allocations, without and with
local weather controls. Columns (3) and (4) display results in which allocations serve as an instru-
ment for surface water deliveries. Given data constraints, the sample is restricted to self-reported
well failures spanning 2015 to 2020, inclusive.

Our second main result is that extreme heat and surface water scarcity increase domestic
well failures, which compromise access to drinking water. Our preferred specification in column
(4) indicates that an additional HDD increases the share of domestic wells that fail by 0.2 percent-
age points, and a 1-AF/acre reduction in surface water increases well failures by 5.6 percentage
points. Translated to our 2021 example, well failure probability increased by 3.9 percentage points
(or 3,042 wells) as a result of surface water curtailments and by 4.4 percentage points (or 3,433
wells) due to extreme heat. If households must eventually replace these wells with deeper ones,
assuming a conservative cost of $10,000 per domestic well, that translates to potential damages of
$30.4 million and $34.3 million from surface water and extreme heat shocks, respectively.22 These

21Table A6 reports annual effects of surface water shocks and harmful degree days over a four-year lag. Figure A9
plots the cumulative effect of a 1 HDD on the depth to the water table in each of the four years following surface water
curtailments.

22In Table A9, we show that domestic well drilling responds to these shocks in the same direction as agricultural
well drilling, but with smaller and less precise magnitudes relative to agricultural wells. Given that well failures are
unexpected and drilling a replacement well is capital intensive, it is not surprising that households may not immediately
respond to well failures in the same year and may take more temporary measures, like purchasing bottled water.
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Figure 5: Cumulative Impulse Response of Surface Water Shocks on ∆DTW

Note: Figure displays the cumulative impulse response of a single surface water shock (AF/acre)
in the initial year. Dependent variable is ∆DTW and the dark line reflects the sum of contempora-
neous and lagged coefficients on surface water deliveries for each year since the initial shock from
the IV model using allocations as an instrument for deliveries. Light shading reflects confidence
intervals clustered at the DAUCO level.

estimates are large when compared to the sample mean probability of well failure of 3% displayed
in Table 1. Data limitations, specifically that the domestic well failure data span only a six year
window, prevent us from estimating the distributed lag model on domestic well failures.

We may overstate the impacts of weather shocks on access to drinking water if assistance
for domestic failures increases or domestic well failures become more salient during droughts.
This is a concern in our setting since support for domestic failures differs within the state, with
10 designated counties receiving differential treatment.23 To test for this possibility, we restrict
our sample to the 10 counties in the California Partnership for the San Joaquin Valley, and eval-
uate the effect of surface water and heat shocks on domestic well failures. Results in column (5)

23Information on dry well reporting, assistance and how it differs across regions can be found at: https:
//mydrywell.water.ca.gov/report/shortage_resources
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Table 3: Linear Probability of Reported Well Failure

Reduced Form IV

(1) (2) (3) (4) (5)

Ag SW Allocation (AF/acre) -0.016 -0.028
(0.007) (0.016)

Ag SW Deliveries (AF/acre) -0.030 -0.056 -0.062
(0.010) (0.019) (0.016)

Harmful Degree Days 0.002 0.002 0.004
(0.001) (0.001) (0.002)

Observations 468,339 468,081 468,325 468,067 106,726
N Groups 78,082 78,039 78,068 78,025 17,794
Weights Crop Acres Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓ ✓
Other Weather ✓ ✓ ✓

Note: Dependent variable is a {0,1} outcome if a domestic groundwater reported a failure that year. The panel spans
from 2015-2020 and is composed of all domestic groundwater wells with unique coordinates in California. Column 5
reports results from the subset of counties within the California Partnership for the San Joaquin Valley. All regressions
are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are clustered at
the DAUCO level and are reported in parentheses.

highlight that even within a sample of counties that receive similar state assistance, our results are
unchanged.

We find that weather-driven well failures are concentrated almost exclusively among well-
owners that are lower-income populations and among well-owners of color. To investigate the
distributional effects of well failures, we decompose the treatment effects reported in column (4)
of Table 3 by estimating separate regressions that interact the outcome variable with subgroup
indicators.24 While domestic wells are disproportionately located in low income areas and com-
munities of color, we define sub-groups such that there are an equal number of domestic wells
in each group. Panels (a) and (c) of Figure 6 plot the effects for surface water curtailments and

24These are not heterogeneous effects but rather a decomposition of incidence; for subgroups that are mutually
exclusive and exhaustively defined, the coefficients across subgroups sum to the main coefficient in Table 3
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harmful degree days decomposed by income quartile, while panels (b) and (d) plot the effects de-
composed by quartile of the non-white population share. Even within this relatively disadvantaged
population, treatment effects occur disproportionately among relatively low-income and non-white
domestic well users. As shown in Figure 1, this disproportionate change is likely driven by the
fact that wells in these subgroups are drilled at statistically shallower depths. Relatively whiter
well-owning households exhibit almost no change in domestic well failures, and higher-income
populations demonstrate only a small increase in well failures.

One Mechanism: Agricultural Well Construction

Our results so far establish that heat and surface water scarcity cause damages in the form of
groundwater depletion and domestic well failures. Our goal now is to demonstrate that these dam-
ages are at least in part due to adaptation by agricultural producers. To do so, we first estimate the
effects of contemporaneous heat and surface water scarcity on the construction of new agricultural
wells. Table 4 reports results from the count of new agricultural wells, where allocations are used
as an instrument for surface water deliveries. Columns (1) and (2) present treatment effects from
a linear specification, without and with extreme heat and local weather controls. Columns (3) and
(4) display results from Pseudo-Poisson Maximum Likelihood estimation using a control function
approach, again without and with weather variables. Table A5 provides the reduced-form results
of well construction regressed directly on the allocations instrument.

Our third main result is that heat and surface water scarcity induce farmers to construct
more agricultural wells. Farmers drill approximately 46.2% more agricultural wells for a 1-AF/acre
reduction in surface water and 1.3% more for every 1-HDD increase.25 Assuming a uniform cost
of $75,000 per well (California State Board of Equalization, 2023), our estimates imply that in
response to the 2021 drought, farmers spent $24 million to construct 321 additional wells due to
surface water curtailments and $22 million to construct 294 additional wells due to extreme heat.
In addition to drilling more wells, it could be the case that farmers are responding by drilling
deeper wells. Appendix Table A3 evaluates the effect of surface water and temperature shocks
on the drilled depth of newly constructed wells. Agricultural wells are drilled 2.5 feet deeper in
response to an additional harmful degree per day. Both agricultural and domestic well depths also
appear to respond to water scarcity in the same year, though these estimates are imprecise.26

25Recall that estimates must be transformed by eβ −1 to be interpreted as a percent change for Poisson models.
26Persistent groundwater depletion will require future groundwater wells to be drilled deeper, which will make well-
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Figure 6: Decomposing Average Treatment Effects (ATE) by Local Demographics

(a) Ag SW Deliveries (AF/acre) (b) Ag SW Deliveries (AF/acre)

(c) Harmful Degree Days (d) Harmful Degree Days

Note: Figure shows the share of the treatment effect on surface water and heat by demographic
quartile (i.e. treatment effects for the four groups sum to pooled treatment effect in Table 3).
Dependent variable is a binary outcome if a domestic groundwater reported a failure that year
multiplied by demographic quartile identifiers. For panels (a) and (c), the treatment effect on well
failures is decomposed by the Census tract quartile for the percent of the population that is low-
income. In panels (b) and (d), the treatment effect is decomposed by quartiles of the percent of the
population that is non-white. All regressions are weighted by the DAUCO crop acres, include year
and DAUCO fixed effects, and control for local weather.
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Table 4: Construction of New Agricultural Wells: IV and Control Function

IV CF/PPML

(1) (2) (3) (4)
Ag SW Deliveries (AF/acre) -13.06 -12.38 -0.690 -0.620

(4.584) (4.750) (0.262) (0.262)

Harmful Degree Days 0.111 0.0128
(0.0329) (0.00261)

µ̂ 0.732 0.767
(0.346) (0.347)

Observations 9,660 9,240 8,568 8,400
N Groups 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓
Unit FE ✓ ✓ ✓ ✓
Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. All re-
gressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard
errors are clustered at the DAUCO level and are reported in parentheses. Columns (3) and (4) standard
errors are calculated using 500 bootstrap simulations, clustered at the DAUCO level.

One potential threat to interpreting these results as a mechanism of groundwater depletion
is that the new wells constructed in response to weather shocks might not truly add to pre-existing
irrigation capacity. Perhaps farmers construct new wells while at the same time retiring old wells,
or perhaps they simply shift the construction of already-planned wells forward in time. Under
either scenario, our main estimates would overstate the extensive-margin response. To investi-
gate the possibility of well replacement, we estimate the effect of weather shocks on the count of
agricultural well destruction. Results presented in Appendix Table A4 provide little evidence of
well replacement. For surface water scarcity, the effects on well destruction are all much smaller
than the effects on well construction with large standard errors. For extreme heat, if anything, the
estimates suggest that well owners delay well destruction in response to heat exposure.

To introduce dynamics into the well drilling decision and probe the possibility that our con-

drilling costs more expensive. The full extent of depletion is realized over time, however, which may be the reason
why the estimates on the same-year surface water shocks are imprecise.
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temporaneous results are driven by intertemporal substitution, we augment our main specification
to include three annual lags of surface water deliveries and harmful degree days. These lagged
estimates capture the net effect of past shocks on contemporaneous decisions, or the net effect
of contemporaneous shocks on future decisions. They measure two phenomena. First, if farm-
ers update beliefs about weather and surface water availability in response to a series of past and
contemporaneous shocks, then past and current negative shocks may induce farmers to construct
more wells. This would be captured by a cumulative effect that is significantly larger than the
contemporaneous effect. Alternatively, if weather shocks simply alter when a well is constructed,
which we refer to as intertemporal substitution, then the coefficient estimates on lagged variables
should take the opposite sign of the contemporaneous effect because drilling a well today offsets
the need to drill one in the future. While our specification does not allow us to decompose the two
channels, we can examine the gross effect of lagged shocks on well construction.

Figure 7 plots the cumulative effect of a 1-AF/acre surface water shock on new well con-
struction in each of the four years following the surface water curtailment, and Table A7 reports
individual annual effects in a stepwise fashion.27 Incorporating lagged surface water deliveries
increases the extensive-margin response from 12.4 new wells to 16.1 new wells from a 1-AF/acre
reduction in surface water. This suggests that while intertemporal substitution may alter drilling
decisions, on net, contemporaneous shocks and expectations about future weather, as measured
by lagged surface water curtailments, drive the extensive-margin response. Our results imply that
farmers respond to contemporaneous and past surface water scarcity by expanding groundwater
irrigation and constructing wells that otherwise would not have been drilled.

Decomposing the Mechanisms

Our main empirical estimates show that surface water scarcity and extreme heat cause both ground-
water depletion and increased agricultural well construction. A natural next question is how much
of the damages (in depletion, and by extension, domestic well failures) are explained by farm-
ers’ responses to shocks. To answer this question, we proceed in two steps. First, we apply the
simple contemporaneous physical model from equation (3) to decompose the effect on ground-

27Figure A10 plots the cumulative effect of 1 HDD on new well construction in each of the four years following a
harmful degree day. We do not estimate a distributed lag instrumental variables model using the Poisson transforma-
tion. This is because the control function approach outlined in equation (11) is incompatible with multiple nonlinear
endogenous variables.
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Figure 7: Cumulative Impulse Response of Surface Water Shocks on Well Construction

Note: Figure displays the cumulative impulse response of a single surface water shock (AF/acre)
in the initial year. Dependent variable is the number of new wells constructed and the dark line
reflects the sum of contemporaneous and lagged coefficients on surface water deliveries for each
year since the initial shock. Light shading reflects confidence intervals clustered at the DAUCO
level.

water depth into three margins: (1) the contemporaneous extensive margin of well construction,
(2) the intensive margin of increased pumping per well, which is unobserved, and (3) changes in
recharge rates. Using effects recovered from this static decomposition, we then apply the dynamic
model from equation (A4) derived in Appendix A.1; this augments the decomposition to include
the future well drilling margins.

Table A8 lists the parameter values we use for this exercise. They include (a) our point
estimates on the change in groundwater depth and new well construction, (b) one parameter that
we obtain directly from our raw data, the count of existing wells w, and (c) three parameters that
we draw from the literature specific to California: average annual groundwater extraction per well
(qtau), aquifer storativity (κ−1), and the recharge rate (∑T

τ=t
∂Rτ (sτ )

∂ st
).28 Where multiple published

28This recharge rate captures the total recharge that results from a shock at one point in time. It is possible that some
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values are plausible, we choose conservative values that will reduce the size of the extensive margin
relative to the other mechanisms.

To proceed with the static decomposition, we substitute parameter values into equation
(3) and recover the unobserved intensive-margin response through algebra. We first convert our
estimated effect on groundwater depth to the corresponding effect on the volume of groundwater
stocks, by dividing it by κ . We obtain a 0.35 AF/acre decline in groundwater stocks per AF/acre
reduction in surface water deliveries. Of this depletion, we attribute a maximum of 51% to a
reduction in recharge (0.18 AF/acre, or a 1.5 ft decline), leaving a 0.17 AF/acre increase in gross
groundwater extraction to be divided between the intensive and extensive margins. The extensive
margin response is conservatively estimated to be 0.01 AF/acre, implying that 2% of the effect
on groundwater stocks, or 5% of the effect on groundwater extraction, is attributable to new well
construction. In this framework, the rest (0.16 AF/acre) must be due to the intensive margin: 46%
of the effect on groundwater stocks, or 95% of the effect on groundwater extraction, is due to
increased pumping from existing wells. However, a limitation of the static decomposition is that
new wells constructed in a given year can only affect groundwater extraction in that year.

Including the dynamic effects of well construction, we estimate that the extensive mar-
gin (both contemporaneous and future) accounts for 41% of the effect of surface water scarcity
on groundwater extraction. The cumulative effect of a one-year reduction in surface water of 1-
AF/acre is a 0.45 AF/acre decline in groundwater stocks. Of this depletion, 40% is attributable to
lost recharge, leaving a 0.26 AF/acre increase in groundwater extraction to be explained. The pre-
viously calculated contemporaneous intensive margin—increased pumping from existing wells—
represents 35% of the decline in the water table, and 59% of the increase in extraction. The
remainder, about 0.11 AF/acre of extraction, is attributable to the contemporaneous and future
well-drilling margins.29 This represents 41% of the increase in groundwater extraction or 25% of
the total effect on groundwater depletion. Full details and algebra of the decomposition can be
found in the Appendix section A.2 and a summary of the margins in Table A1.

These results show that new well construction plays a meaningful role in how environmen-
tal shocks affect groundwater resources. The contrast between the static and dynamic versions of

of this recharge occurs in later periods since water takes time to percolate through the ground into the aquifer.
29The well-drilling margin is inclusive of both cumulative pumping from wells drilled in the contemporaneous year

and future wells drilled as a result of the shock in the initial year. For the latter, from Figure 7 and Table A7, we know
that new well construction increases about 31% more beyond the initial year from the sum of the lagged response
(−16.07−−12.38

−12.38 ).
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the decomposition shows that the durable nature of well construction gives rise to persistent ef-
fects that are important to take into account. The decomposition also demonstrates that out of the
damages to groundwater levels and well failures we estimate as occurring in response to environ-
mental shocks, a meaningful share is indeed due to behavioral margins of adjustment, through a
mechanism that we observe and estimate empirically.

7 Conclusion

Groundwater serves as a critical natural resource that must meet the needs of the environment, the
agricultural industry, and millions of residential households in California. Using well-level data
spanning almost three decades, this paper shows that drought and heat shocks have accelerated
groundwater depletion and exacerbated existing externalities. We demonstrate that this is driven in
part by additional extraction by farmers as they rely more heavily on groundwater to mitigate sur-
face water scarcity and extreme heat. This adaptation behavior limits the private costs of weather
fluctuations to agricultural users in the near term, but exacerbates externalities to domestic well
owners. Importantly, these external costs are heavily borne by people of color and low-income
households.

The findings from this study are directly relevant to the management of groundwater, which
is largely unregulated across the world. Myriad collective action governance, restrictions, and
markets have recently been proposed or enacted as solutions to manage groundwater with some
success (Ayres, Meng, and Plantinga, 2021; Burlig, Preonas, and Woerman, 2024; Earnhart and
Hendricks, 2023; Bruno and Hagerty, 2023; Bruno, Jessoe, and Hanemann, 2024). Restrictions
or moratoria on new well drilling, especially in drought years, are another potential regulatory in-
strument to curb groundwater depletion (Kuwayama and Brozović, 2013). Our work suggests that
farmers respond to drought by drilling new wells and increasing pumping at existing wells, mean-
ing groundwater externalities may persist through adjustments along both intensive and extensive
margins. Effective policies will address both dimensions.

Our findings shed light on the extent to which adaptation will buffer the agricultural costs
of climate change. A large body of work shows that agricultural outcomes are responsive to fluc-
tuations in weather (Deschênes and Greenstone, 2007; Hagerty, 2021). However, evidence on the
extent to which adaptation can mitigate these costs is mixed (Burke and Emerick, 2016; Auffham-
mer, 2018; Hultgren et al., 2022). Long-run costs may be reduced if agricultural producers adopt
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new technologies, change the location and types of crops grown, or adjust the quantity and com-
position of inputs (Sloat et al., 2020; Rosa et al., 2020; Aglasan et al., 2023). But the open-access
management of a common-pool resource may result in the opposite being true. We show that in the
short-run, heat and surface water shocks will deplete the available groundwater stock, suggesting
that in the long-run the costs of climate change may be amplified if farmers cannot rely on ground-
water to buffer against these shocks (Hornbeck and Keskin, 2014; Perez-Quesada, Hendricks, and
Steward, 2024).

Furthermore, this paper demonstrates that adaptive behaviors to shield against the damages
of climate change may impose costs on other parties. While adaptation costs are conventionally
included in costs of climate change accounting, the externalities from adaptation are omitted from
these figures. Additionally, as climate adaptation occurs in other sectors (e.g., energy, healthcare,
manufacturing), it is imperative for policymakers to ensure that the actions taken to limit direct
climate damages are not unintentionally imposing costs on others.
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For Online Publication: Appendix

A.1 Dynamic Effects of Well Drilling

As discussed in the paper, the decision to drill a well and the subsequent impacts from that action
are inherently dynamic. In this section, we expand our base conceptual model to incorporate a
time dimension of these effects over time.

First, the stock of wells drilled is a function of current and past surface water shocks and
weather realizations, wτ(sτ), where sτ is a vector of current and past weather shocks at time τ .30

The stock of wells at time τ can be characterized as the initial stock of wells and the sum of wells
drilled between period µ = 1 and year τ . The annual change in wells is a function of weather
shocks experienced between 1 and µ :

wτ(sτ) = wτ−1 +∆wτ(sτ)

= wτ−2 +∆wτ−1(sτ−1)+∆wτ(sτ) (A1)

= w0 +
τ

∑
µ=1

∆wµ(sµ)

Second, well drilling in period t affects the depth to the water table in the future:

DTWT (st , ...,sT ) = DTWt +κ

T

∑
τ=t

Cτ(sτ)−κ

T

∑
τ=t

Rτ(sτ)

= DTWt +κ

T

∑
τ=t

qτ(sτ)wτ(sτ)−κ

T

∑
τ=t

Rτ(sτ) (A2)

= DTWt +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
µ=t

∆wµ(sµ)
)
−κ

T

∑
τ=t

Rτ(sτ)

Measured at some future period T , the depth to the water table is the sum of the starting

30For expositional ease, we restrict our model to surface water shocks, but it easily extends to heat shocks.
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water table depth, cumulative groundwater consumption between period t and T , and the sum of
current and future recharge between period t and T . Note here that pumping intensity, qt(st) is
only dependent on the current period shock.

Expanding the sums for convenience, to keep current-year shocks separate from future
years’ shocks:

DTWT (st , ...,sT ) = DTWt +κ

T

∑
τ=t

qτ(sτ)
(

w0 +
τ

∑
u=t

∆wu(su)
)
−κ

T

∑
τ=t

Rτ(sτ)

(A3)

= DTWt +κ qt(st)wt(st)︸ ︷︷ ︸
Contemporaneous

consumption

+κ

T

∑
τ=t+1

qτ(sτ)
(

wt(st)︸ ︷︷ ︸
Future pumping from

stock of wells at t

+
τ

∑
u=t+1

∆wu(su)︸ ︷︷ ︸
Wells drilled in

years after t

)
−κ

T

∑
τ=t

Rτ(sτ)

Here, depth to the groundwater in future period T is a function of five unique terms: (1)
Starting depth in year t, DTWt , (2) consumption in the first year t, (3) the sum of future pumping
from the stock of wells at time t that persistently pump each year in the future, (4) pumping from
the sum of new wells that are drilled after year t, and (5) sum of each year’s recharge. Each of
these terms can be a function of surface water supplies, and therefore, may be important margins
for appropriate water accounting.

With these general dynamic forms of well drilling and depth to the water table, we can now
evaluate the cumulative effect of a surface water shock in year t on groundwater availability in
future period T as:

dDTWT

dst︸ ︷︷ ︸
cumulative effect

= κ

[
wt(st)×

dqt(st)

dst︸ ︷︷ ︸
contemporaneous
intensive margin

+qt(st)×
∂wt(st)

∂ st︸ ︷︷ ︸
contemporaneous
extensive margin

+

(A4)
T

∑
τ=t+1

qτ(sτ)×
∂wt(st)

∂ st︸ ︷︷ ︸
future pumping

from wells drilled in t

+
T

∑
τ=t+1

qτ(sτ)×
∂wτ(sτ)

∂ st︸ ︷︷ ︸
future drilled wells

from st

−
T

∑
τ=t

∂Rτ(sτ)

∂ st︸ ︷︷ ︸
recharge margin

]
.

The marginal effect of a weather shock on groundwater depth can now be decomposed
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into five mechanisms. First, farmers may respond to a current shock by pumping more from
each preexisting well (the contemporaneous intensive margin): wt(st)

dqt
dst

(st). Second, farmers
may construct new wells and pump from those new wells today (the contemporaneous extensive
margin): qt

∂wt
∂ st

(st). Third, wells constructed today will continue to pump groundwater in future
years: ∂wt

∂ st
∑

T
τ=t+1 qτ(sτ). Fourth, a contemporaneous weather shock will impact future drilling

decisions, ∑
T
τ=t+1 qτ(sτ)× ∂wτ (sτ )

∂ st
. Fifth, weather shocks will have contemporaneous and future

effects on recharge: ∑
T
τ=t

∂Rτ

∂ st
(sτ).
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A.2 Calculations for Decomposition Exercise

Once we obtain empirical estimates and assign numerical values to the parameters in equation
(A4), we can input the values and clarify the magnitude of each margin’s contribution to the gross
effect. Of the five mechanisms, we already know three from the static decomposition; only the
“future well drilling from st” and “future pumping from wells drilled in t” remain. The former is
challenging to estimate directly and in full.31 Instead, we back out the gross value of the future
well drilling margins from other terms we have already estimated. The intuition is that the future
extensive margins are the only mechanisms that affect periods beyond the contemporaneous one,
so all lagged effects of weather shocks on groundwater depth can be attributed to them:

dDTWT

dst
− dDTWt

dst
= κ

[ T

∑
τ=t+1

qτ(sτ)×
∂wt(st)

∂ st︸ ︷︷ ︸
future pumping

from wells drilled in t

+
T

∑
τ=t+1

qτ(sτ)×
∂wτ(sτ)

∂ st︸ ︷︷ ︸
future drilled wells

from st

]
=

T

∑
τ=t+1

dDTWτ

dst
.

(A5)
Table A1 provides a summary of this accounting exercise. In Table A6, we show that the

cumulative effect of a single shock in the initial year grows to a 3.72-foot reduction per AF/acre
of surface water supplies by the fourth year after the shock. In volume, this translates to a 0.45
AF/acre reduction after multiplying by the aquifer storativity coefficient, κ . We assign the maxi-
mum plausible decrease in recharge based on water balance data from the California Department
of Water Resources. Then, the remainder must be derived from human behavioral margins of ad-
justment. From the contemporaneous exercise and estimates on contemporaneous well drilling, we
calculate that approximately 0.01 AF/acre or 3% of the gross effect comes from new wells drilled
in the first year of the shock. We can then back out the size of the unobserved contemporaneous in-
tensive margin response, which we calculate to be 0.16 AF/acre or 35% of the gross effect. Future
well drilling and groundwater pumped from new wells in response to surface water shocks then

31This term requires knowledge of the entire time path of the average quantity pumped per new well qτ every year
into the indefinite future. It is therefore highly sensitive to assumptions about the lifespan of an agricultural well, as
reflected in either the choice of time horizon T , or how quickly the pumping quantities fade to zero over time. In
principle, we could assign qτ from a statewide-representative well-level dataset of extraction and well age, but such
data are not available. We could assume that wells have a finite average lifespan T and that they continue pumping
the same value qτ = qt in each year until then, but the useful life of a well can vary widely. We also lack ideal data
on wells that reduce or stop production, so the average amount pumped per well in future years becomes increasingly
unreliable with greater τ .
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account for the remaining 22% of the cumulative gross effect on groundwater levels. The total well
drilling response accounts for 25% of the total effect or 41% of the behavioral response.
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Table A1: Calculating the Margins of Response

Margin Value % of Gross Effect Description

Gross Effect:
dDTWT

dst
× 1

κ
0.45 AF/acre - Cumulative gross effect

on groundwater levels.
Estimated in Table A6.

dDTWt
dst

× 1
κ

0.35 AF/acre - Contemporaneous
gross effect on ground-
water levels. Estimated
in Table 2.

Physical Margin:
∑

T
τ=t

∂Rτ (sτ )
∂ st

0.18 AF/acre 40% Maximum potential
lost recharge from dst .
Assigned from DWR
Water Balance Data.

Behavioral Margins:
wt(st)× dqt(st)

dst
0.16 AF/acre 35% Contemporaneous

intensive margin from
dst . Calculated from
equation (3).

qt(st)× ∂wt(st)
∂ st

0.01 AF/acre 3% Contemporaneous
pumping from new
wells drilled from dst .
Estimated in Table 4.

∑
T
τ=t+1 qτ(sτ)× ∂wτ (sτ )

∂ st
0.10 AF/acre 22% Future pumping from

new wells drilled from
dst . Calculated from
equation (A4).
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A.3 Supplementary Figures and Tables

Figure A1: Location of Domestic Wells

Note: Figure shows the location of domestic groundwater wells constructed. Data are
from Well Completion Reports from DWR.
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Figure A2: Population Demographics in California

% Hispanic Population

(a)

% Population below poverty line

(b)

Note: Figure displays demographics at the Census tract level using data from 2020 (Manson et al.,
2022). Panel (a) plots the percentage of the population that identifies as Hispanic. Panel (b) plots
the percentage of households that fall below the federal poverty line for their household size. Bold
county boundaries specify counties in the San Joaquin Valley.
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Figure A3: Maximum Contracted Surface Water Volumes (AF) by DAUCO

Note: Figure displays the time-invariant maximum volume of surface water that each district can
potentially receive. Water contracts may be with the State Water Project, the Central Valley Project,
the Lower Colorado River Project, or individual water rights. The variety of sources and water
projects throughout California contributes to cross-sectional variation in the potential magnitude
of water deliveries.
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Figure A4: Temporal Variation in Allocation Percentages by Water Project Divisions

Note: Figure displays the time-varying allocation percentages for each of the water projects in Cal-
ifornia. Allocation percentage for each project is determined by the availability of water available
in each project’s reservoirs or snowpack levels near reservoirs. Because of this, allocation percent-
ages within the same year may still differ across the state depending on environmental conditions
at the source.
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Figure A5: Location of Monitoring Wells in California Groundwater Basins

Note: Figure displays the locations of groundwater monitoring wells and California’s
principle groundwater basins. Each dot displays a unique groundwater monitoring well
reported in our dataset. The blue shaded areas display the locations of Bulletin 118
groundwater basins in California.
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Figure A6: Locations of Reported Well Failures, 2014-2020

Note: Figure plots the locations of all reported well failures from 2014-2020 from the
Dry Wells Reporting System from California DWR. Counties in the San Joaquin Valley
have a thick border, and a large share of reported well failures occur in these counties.

57



Figure A7: Histogram of Annual Agricultural Well Construction per DAUCO, 1993-2020

Note: Histogram plots the density of the count of agricultural wells constructed per year
per DAUCO in our dataset. The bars show the skewed nature of the count data, with
many zero observations, and small share of DAUCO-years with reported constructions
exceeding 50 new wells.

58



Figure A8: Depth of Drilled Wells Over Time

Note: Figure displays the annual average depth of new wells over time by well type. The average
agricultural and domestic well is drilled over 200 feet deeper than in 1950.
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Table A2: Agricultural SW Deliveries: First-Stage Results

(1) (2) (3) (4)

Ag SW Deliveries Ag SW Allocations

Ag SW Allocations (AF/acre) 0.588 0.531
(0.0460) (0.0540)

Harmful Degree Days -0.000353 -0.00140 -0.00197
(0.00172) (0.00238) (0.00131)

Growing Degree Days 0.000184 0.0000708 -0.000213
(0.0000431) (0.0000665) (0.000138)

Annual Precipitation -0.000461 -0.000759 -0.000560
(0.000202) (0.000151) (0.000204)

Observations 9996 9996 9996 9996
N Cluster 357 357 357 357
F Stat 163.6 79.10 10.74 4.993
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: In columns 1-3, the dependent variable is Ag SW deliveries per crop acre in levels from 1993-2021. In column
4, the dependent variable is Ag SW allocation per crop acre in levels. All regressions are weighted by the DAUCO
crop acres and include year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are
reported in parentheses.
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Table A4: Destruction of Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation per crop acre (AF) 0.115 0.164 -0.0903 -0.00591
(0.193) (0.228) (0.140) (0.143)

Harmful Degree Days -0.00215 -0.0228
(0.00778) (0.00814)

Observations 10,416 9,996 4,158 4,158
N Cluster 372 357 154 154
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of destroyed agricultural wells per DAUCO from 1993-2020. Columns (1)
and (2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO
fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A5: Construction of New Agricultural Wells: Reduced-Form

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -7.180 -6.581 -0.333 -0.278
(2.665) (2.596) (0.131) (0.124)

Harmful Degree Days 0.115 0.00897
(0.0390) (0.00202)

Observations 9,660 9,240 8,568 8,400
N Cluster 345 330 306 300
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. Columns (1) and (2)
report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson maximum
likelihood model. All regressions are weighted by the DAUCO crop acres and include year and DAUCO fixed effects.
Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Dynamic Empirical Estimation Results

Table A6 reports the dynamic effects up for up to 3 lag shocks on surface water deliveries and
harmful degree days. The cumulative effects of this table are plotted in Figures 5 and A9.

Table A7 considers the dynamics of agricultural well drilling. We report the results a linear
IV for well construction, similar to columns (1) and (2) of Table 4 but now supplemented with up
to three lagged years of agricultural surface water deliveries. Columns (2) through (4) each add an
additional lag. In these specifications, deliveries are instrumented with surface water allocations.
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Table A6: Lagged Changes in Groundwater Depth

(1) (2) (3) (4)
∆DTW

Ag SW Deliveries (AF/ crop acre) -2.914 -2.769 -2.828 -3.109
(1.176) (1.146) (1.146) (1.146)

L.Ag SW Deliveries (AF/ crop acre) 0.433 0.200 0.428
(0.654) (0.629) (0.625)

L2.Ag SW Deliveries (AF/ crop acre) -0.258 -0.406
(0.699) (0.724)

L3.Ag SW Deliveries (AF/ crop acre) -0.637
(0.418)

∑βdeliveries -2.914 -2.335 -2.887 -3.724
pdeliveries 0.0138 0.00812 0.00446 0.0000336

Harmful Degree Days 0.0309 0.0226 0.0245 0.0198
(0.0115) (0.0126) (0.0130) (0.0117)

L.Harmful Degree Days 0.0168 0.0307 0.0311
(0.0100) (0.0118) (0.0126)

L2.Harmful Degree Days -0.0207 -0.0371
(0.00978) (0.0130)

L3.Harmful Degree Days 0.0131
(0.0109)

∑βhdd 0.0309 0.0394 0.0345 0.0269
phdd 0.00795 0.00455 0.0340 0.123

Observations 560,931 555,846 550,874 545,710
N Cluster 282 281 281 280
Weights Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells
Crop Acres

# wells

Other Weather ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Dependent variable is the change in the depth to the groundwater from the surface (ft) from 1994-
2020 at the monitoring well level. All regressions are weighted by the DAUCO crop acres and include year
and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parenthe-
ses. pdeliveries and phdd report the p-values for a t-test of whether the sum of the respective coefficients is
different from zero. 65



Figure A9: Cumulative Impulse Response of Harmful Degree Days on ∆DTW

Note: Figure displays the cumulative impulse response of a single harmful degree day in the initial
year. Dependent variable is ∆DTW and the dark line reflects the sum of contemporaneous and
lagged coefficients on harmful degree days for each year since the initial shock. Light shading
reflects confidence intervals clustered at the DAUCO level.
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Table A7: Lagged Agricultural Well Construction

(1) (2) (3) (4)
New Ag Wells per DAUCO

Ag SW Deliveries (AF/ crop acre) -12.38 -11.51 -11.53 -11.45
(4.750) (4.450) (4.582) (4.537)

L.Ag SW Deliveries (AF/ crop acre) -3.512 -2.999 -3.602
(2.858) (2.779) (3.207)

L2.Ag SW Deliveries (AF/ crop acre) 1.377 3.089
(2.355) (2.505)

L3.Ag SW Deliveries (AF/ crop acre) -4.109
(2.853)

∑βdelieveries -12.38 -15.02 -13.15 -16.07
pdeliveries 0.00913 0.00877 0.0277 0.0355

Harmful Degree Days 0.111 0.0981 0.0971 0.0897
(0.0329) (0.0349) (0.0318) (0.0327)

L.Harmful Degree Days 0.0809 0.0848 0.0548
(0.0397) (0.0426) (0.0390)

L2.Harmful Degree Days 0.0551 0.0643
(0.0247) (0.0239)

L3.Harmful Degree Days 0.0174
(0.0237)

∑βhdd 0.111 0.179 0.237 0.226
phdd 0.000760 0.00484 0.00171 0.00302

Observations 9,240 8,910 8,580 8,250
N Cluster 330 330 330 330
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Other Weather ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Note: Table reports regression results from a lagged linear IV model. The dependent variable is the count of new
agricultural wells per DAUCO from 1993-2020. All regressions are weighted by the DAUCO crop acres and include
year and DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
pdeliveries and phdd report the p-values for a t-test of whether the sum of the respective coefficients is different from
zero. 67



Figure A10: Cumulative Impulse Response of Harmful Degree Days on Well Construction

Note: Figure displays the cumulative impulse response of a single harmful degree day in the initial
year. Dependent variable is ∆DTW and the dark line reflects the sum of contemporaneous and
lagged coefficients on harmful degree days for each year since the initial shock. Light shading
reflects confidence intervals clustered at the DAUCO level.
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Table A8: Parameter Values for Decomposition

Parameter Value Units Description
dDTWt

dst
-2.91 ft per AF/ac Same-year gross change in DTW per AF/acre

change in surface water. Results from Table 3
Column 4.

dDTWT
dst

-3.72 ft per AF/ac Cumulative future change in DTW per AF/acre
change in surface water. Results from figure 5
and table A6

κ 8.33 unitless Inverse storativity or specific yield Department
of Water Resources (2020)

∑
T
τ=t

∂Rτ (sτ )
∂ st

0.18 ft per AF/ac Calculated from California DWR Water Bal-
ance Data, which reports regional values of
recharge as a proportion of total applied water.
We choose the maximum of a calculated range
of 0.07 to 0.18 ft per AF/ac.

∂wt
∂ st

−4.60×10−5 wells/ac/yr per
AF/ac

Change in the number of new agricultural wells
drilled per year per crop acre due to a one
AF/acre change in surface water. Results from
Table 4 Column 4 multiplied by the total an-
nual average of new agricultural wells divided
by California crop acreage.

qτ 178 AF/well/yr Average AF/year of groundwater pumped per
well. Calculated from Department of Water Re-
sources (2020) that estimates agriculture in Cal-
ifornia uses 15.2 million AF of groundwater per
year divided by the total number of wells in our
data.

wτ 8.60×10−3 wells/ac Number of agricultural wells in use in Cali-
fornia Well Completion Reports divided by the
number of crop acres in California in our data.

Note: Table reports estimated and calculated values for parameters in the decomposition of inten-
sive and extensive margin effects presented in equations (3) and (A4). California Water Balance
Data used to calculate recharge coefficient can be accessed at https://data.cnra.ca.gov/dataset/
water-plan-water-balance-data 69
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Additional Empirical Specifications

We conduct two falsification tests of our primary model. First, Table A9 reports results from a
regression of new domestic well construction on agricultural surface water deliveries and harmful
degree days. Since agricultural surface water allocations are solely related to the agricultural sector,
we expect shocks to this variable to be unrelated to domestic well construction. Indeed, none of the
coefficients report a significant effect on new domestic well construction. Furthermore, additional
HDDs do induce more domestic wells to be drilled, but the response is smaller in magnitude than
for agricultural well construction. This supports that agricultural well drilling is due to reduced
surface water for agriculture, and not some correlated factor with all types of well drilling more
broadly. Further, this also shows that domestic households are unable to respond to heat to the
same degree as agricultural groundwater users, and thus, more vulnerable to groundwater scarcity
in the future.

We explore whether shocks in surface water supplies to other sectors, municipal and indus-
trial, impact agricultural well drilling in Table A10. These results indicate that municipal and in-
dustrial water supplies are actually positively correlated with agricultural well construction, which
is opposite of the effect of agricultural surface water. None of these coefficients are significant,
and again, supports that the results in Tables 4 and A5 are due to agricultural surface water and not
another factor that is correlated with all sectors’ water supplies.
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Table A9: Construction of New Domestic Wells

OLS PPML

(1) (2) (3) (4)

Ag SW Allocation (AF/ crop acre) -1.534 -1.021 -0.0657 -0.0128
(1.582) (1.535) (0.0783) (0.0641)

Harmful Degree Days 0.0774 0.00950
(0.0477) (0.00445)

Observations 9,660 9,240 9,072 8,876
N Cluster 345 330 324 317
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new domestic wells per DAUCO from 1993-2020. Columns (1) and
(2) report the coefficients for the OLS model. Columns (3) and (4) report coefficients from a psuedo-poisson
maximum likelihood model. All regressions are weighted by the DAUCO crop acres and include year and
DAUCO fixed effects. Standard errors are clustered at the DAUCO level and are reported in parentheses.
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Table A10: Construction of New Agricultural Wells: Municipal and Industrial Surface Water

OLS PPML

(1) (2) (3) (4)

M&I SW Allocation per Acre 19.71 23.36 1.407 1.459
(28.88) (28.91) (1.300) (1.257)

Harmful Degree Days 0.115 0.0143
(0.0422) (0.00287)

Observations 8,874 8,400 7,540 7,224
N Cluster 306 300 260 258
Weights Crop Acres Crop Acres Crop Acres Crop Acres
Cluster DAUCO DAUCO DAUCO DAUCO
Time FE ✓ ✓ ✓ ✓

Unit FE ✓ ✓ ✓ ✓

Other Weather ✓ ✓

Note: Dependent variable is the count of new agricultural wells per DAUCO from 1993-2020. In-
dependent variable is surface water allocated (AF per crop acre) for municipal and industrial use, as
opposed to agricultural use. Columns (1) and (2) report the coefficients for the OLS model. Columns
(3) and (4) report coefficients from a psuedo-poisson maximum likelihood model. All regressions are
weighted by the DAUCO crop acres and include year and DAUCO fixed effects. Standard errors are
clustered at the DAUCO level and are reported in parentheses.
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