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Abstract

Nonpoint source pollution from agriculture is the leading cause of nutrient pollution in the
US. This paper addresses whether localized, farmer-led programs can cost-effectively reduce
nonpoint source pollution by increasing the adoption of agricultural conservation practices.
We study this in the context of an innovative program in Wisconsin that incentivizes farmers
to take collective leadership of improving water quality in their local watersheds. Using a
shift-share instrumental variables design, we find that a 10 percentage point increase in farmer
participation in these programs leads to a 0.03 mg/L reduction (14%) in ambient phosphorus
concentrations in local streams and rivers. We also show that this change causes an increase
in the adoption of cover crops, conservation tillage, and more diverse crop rotations. Im-
portantly, this localized approach achieves water quality and conservation improvements at a
substantially lower cost than existing federal subsidy programs, demonstrating the potential

for bottom-up approaches to address nonpoint source pollution in other contexts.
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1 Introduction

Agriculture is the leading source of nonpoint source water pollution in the United States (Del Rossi
et al., 2023). While regulatory interventions, like the Clean Water Act (1972), are associated with
water quality improvements over the last 50 years, most farms are exempt from past regulations
due to the nonpoint source nature of agricultural nutrient runoff (Keiser and Shapirol 2018). By
definition, nonpoint source pollution enters water bodies from many dispersed locations (e.g., agri-
cultural fields), making emissions difficult to observe and monitor (Griffin and Bromley, |1982).
Furthermore, localized environmental conditions imply different emission and delivery rates over
time and space (Helfand and House, 1995). These realities of nonpoint source pollution make
traditional first-best policy instruments challenging to implement. Thus, much of the existing ef-
forts to reduce nonpoint source pollution rely on large annual expenditures to subsidy programs
through the US Department of Agriculture. These programs contain a host of inefficiencies of their
own (Wu et al., [2004; Fleming, Lichtenberg, and Newburn, |2018), and empirical evidence on their
success is mixed (Liu, Wang, and Zhang, 2023; Sun, Gramig, and Delgado, 2025).

We evaluate a unique policy initiative in which local farmers collectively govern themselves
and their practices to cost-effectively improve water quality in their watershed. We study a novel
state-level program in Wisconsin, the Producer-Led Watershed (PLW) Grant Program. The PLW
program provides start-up grant funding for farmers to take collective leadership in improving
local agricultural and water quality outcomes. Local farmers manage those grant funds to best
address local barriers to adoption in their area through education, peer influence, and offering
modest subsidies to new adopters. In 2023, the PLW program provided $1 million to 43 watershed
groups in Wisconsin, which comprise about a third of the state’s total agricultural acreage. Relative
to other existing policy efforts that administer programs through a central agency, the program
takes a bottom-up approach, where the polluters themselves design policies and activities best
adapted to their local characteristics and to influence neighboring farmers’ decisions. By doing
so, this program attempts to overcome some of the shortcomings associated with more centralized
regulations that set uniform standards and incentives across large regions.

We assess the program’s effectiveness by estimating how PLW participation influences
local water quality and management decisions. First, we study how the presence of PLW partici-
pation changed ambient water quality outcomes within those watersheds. In particular, we focus

on phosphorus and nitrogen concentrations in surface water, which are the two leading fertilizer in-



puts in agriculture and impose significant welfare costs at excessive levels in surface water (Jones,
2019; Wolt et al., 2019; Kuwayama et al.,|2020). Second, the PLW groups accomplish their goals
by attempting to increase the adoption of conservation practices and by growing less fertilizer-
intensive crops. We estimate the extent to which PLW participation accelerated the adoption of
conservation practices, specifically focusing on cover crops, reduced tillage, and diversified crop
choice.

Importantly, participation in the PLW program is voluntary, which presents a common
causal identification challenge in the agricultural conservation literature (Claassen, Duquette, and
Smith, 2018). To overcome the concern that farmers may opt into the program in non-random
ways, we implement a shift-share instrumental variables strategy that exploits exogenous state-
level changes in the program’s budgetary cap (which is set by the governor and state legislator)—
the shifts—interacted with local watershed crop acreage in 2010 before the program was conceived—
the shares. In the first stage of our instrumental variables strategy, we use the temporal variation
from the state-level change and the cross-sectional variation from local crop intensity to predict
participation in the program. Then, the second stage regresses our outcomes of interest on the
predicted PLW participation from the first stage. This approach relies on the assumption that
the state-level changes are not correlated with local water quality and cropping decisions, except
through the channel of the local watershed’s participation in the program.

To estimate these relationships, we build a panel dataset that measures the level of participa-
tion in the program, local surface water quality, land use and cropping decisions, and local weather
variables. First, we obtain a detailed record of the PLW program from the Wisconsin Department
of Agriculture, Trade, and Consumer Protection (DATCP). These proprietary data provide annual
measures of each group’s size (i.e. number of acres), the 12-digit Hydrologic Unit Code (HUC
12), and how much funding they received. Second, we assemble monitor-level phosphorus and
ammonia readings in Wisconsin from the US Geological Survey (USGS) Water Quality Portal
and harmonize the raw readings according to the method introduced by |Krasovich et al.| (2022).
Third, remotely sensed data from Regrow Agriculture Inc. provides estimated annual conservation
practice acreage at the HUC 12 level. Lastly, we collect annual precipitation and weather data
from PRISM. These panel data allow us to control for local time-invariant unobservables through
location-fixed effects and state-level shocks, like commodity price movement, through time-fixed
effects.

We find that a 10 percentage point increase in PLW group participating acreage leads to



a statistically significant 0.03 mg/L reduction in phosphorus concentrations. Ammonia concen-
trations also decline, but the treatment effect is less precise. These changes in water quality are
plausibly driven by increases in conservation practice adoption. The same 10 percentage point
increase in PLW acres leads to a 2.8 percentage point increase in cover crop adoption, 7.7 percent-
age point increase in conservation tillage, and a 0.8 percentage point increase in diversified crop
rotations. A back-of-the-envelope calculation estimates that the additional cover crop acres came
at the cost of $11.54 per acre and $4.19 per acre for tillage reductions. Both costs are about 20% of
the cost of traditional USDA-Natural Resource Conservation Service (NRCS) cost-share program
payments. These findings demonstrate that localized approaches to conservation incentives can be
a more cost-effective way to administer water quality improvements and conservation uptake.

We contribute to the existing literature in several distinct ways. First, we offer empirical
evidence on the relationship between agricultural production and water quality. A growing body
of work estimates how marginal changes in agricultural production affect ambient water qual-
ity outcomes, which generally shows that additional fertilizer and livestock contribute to higher
nitrogen and phosphorus concentrations downstream (Paudel and Crago, [2021; Raff and Meyer,
2022, Metaxoglou and Smith|, 2025). Other work has shown that regulations, through both local
and federal policies, have led to surface water improvements (Chen et al., 2019; Skidmore, An-
darge, and Foltz, [2023a). On the other hand, Liu, Wang, and Zhang (2023) provides evidence
that USDA-NRCS programs improve nitrogen and ammonia concentrations, but conversely, lead
to worse phosphorus outcomes. We uniquely contribute to this literature by studying the effects
of a unique policy intervention on water quality outcomes and by comparing its cost-effectiveness
relative to those established in previous studies. Furthermore, we inform the behavioral mech-
anisms through which environmental outcomes change, as we empirically show that the policy
intervention changed farmers’ production practices.

Second, we contribute to the economics literature on the collective management of natu-
ral resources. The policy intervention in our setting is unique, because it empowers the polluters
(farmers) to locally govern themselves to improve environmental outcomes. These arrangements
have proven to be effective in common-pool resource settings (Ostrom), 2010)), primarily in ground-
water management, where agricultural irrigators self-impose incentives to conserve groundwater
(Smith et al., 201°7; Drysdale and Hendricks, [2018; Orduna Alegria et al., 2024). However, we of-
fer the first empirical evidence of collective governance managing nonpoint source pollution from

agriculture. These regimes do not form organically, but are instead incentivized through mod-



est grant funding. However, in our context, this bottom-up approach leads to more conservation
participation and environmental improvement than traditional policy approaches and at a smaller
public expense. Our findings offer a framework for the expansion of this policy approach into other
settings, where traditional first-best approaches are infeasible.

Finally, we contribute to a growing literature on the role of peer and network effects in
agricultural practice adoption. Much of the economic work on this topic has been conducted
in low-income country contexts throughout South Asia (Foster and Rosenzweig, [1995; Munshi,
2004)), Africa (Conley and Udry, [2001},[2010; Beaman et al., [2021), and elsewhere, though several
studies have also investigated farmer behavior in the United States (Mase et al., |2015; Prokopy
et al., 2019} |Asprooth, Norton, and Galt, |[2023; Burlig and Stevens, 2024). In general, these studies
have found that social networks and peer groups play an important role in disseminating informa-
tion and prompting the adoption of new production practices. Our findings support this conclusion:
Wisconsin’s PLW program leverages local networks of peers to both organize and benefit from the
groups’ activities, and social networks within these initiatives likely contribute to the efficacy of

the program in our setting.

2 Background

The Wisconsin Producer-Led Watershed Program

To mitigate nonpoint source pollution, the Wisconsin Department of Agriculture, Trade and Con-
sumer Protection (DATCP) created the Producer-Led Watershed (PLW) Grant program in 2016.
The program allows for a group of farmers located in the same watershed to jointly submit a grant
application outlining a nonpoint source abatement proposal. DATCP then awards up to $40,000
per year to each qualifying group. The grant funds are managed by each group’s leadership team to
facilitate educational events, on-farm research and demonstrations, and to directly subsidize best
management practices. The legislative budget was capped at $250,000 in its initial year and funded
14 watershed groups. The program’s budget has expanded multiple times over the following years,
and it funded 43 watersheds a total of $1 million in 2023. Figure plots the expansion of the
program over time, and Figure [I[(b)| maps the distribution of active watershed groups in 2023.
This state-level program is a novel, bottom-up approach to reducing nonpoint source pollu-

tion from agriculture. It allows peer farmers to engage in pollution abatement activities that are best
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suited for the distinct environmental (e.g. soil, climate, water resources), management (e.g. crops
versus livestock operations), and social contexts across the state. As an example, some groups
in intensive dairy regions of the state have annual programming focused on manure management
plans. While other regions of the state focus on mitigating nutrient losses in traditional row crop
farming operations. Importantly, the program is designed to allow farmers themselves to be the
leaders of water quality improvement, rather than strict, top-down regulatory measures.

Farmers may be incentivized to participate in this program for several key reasons. First,
they may be direct recipients of grant dollars for the implementation of conservation practices. At
a maximum budget of $1 million per year, however, this funding is relatively scarce within a group,
and only a handful of farmers in a given group may benefit each year from these funds[] The grant
funding is largely intended to be seed funding for groups to cover administrative cost barriers,
rather than purely being devoted to practice subsidies. Over time, groups may generate additional
outside funding from environmental non-profits or private sponsorships. Second, farmers may
participate for social or educational reasons, since group events typically involve socializing, a
free meal, and presentations from conservation professionals (e.g., peer farmers or agronomists).
Lastly, voluntary participation in this program is often cited as a reason that more strict regulatory
measures are not needed in Wisconsin, and that farmers can act collectively to reduce nonpoint
source pollution. This latter sentiment aligns with the principles of collective action arrangements,
and mirrors other contexts where farmers self-impose environmental objectives in order to avoid
future regulation that they do not have direct control over (Ostrom, 2010; |Smith et al., 2017).

From its inception, the program has been widely viewed within the state as an overarching
success from agricultural, environmental, and political perspectives. From a participatory stand-
point, the reported number of farmers, agricultural acres, and conservation acres has increased
every year since 2016. Furthermore, the demand for PLW grants perennially exceeds the state
budget. While many local stakeholders believe this program to be successful from these partici-
patory metrics, it is unclear what environmental outcomes and agricultural decisions would have

been in a counterfactual world without the program in place.

!Compare this, for example, to $30 million that was distributed to Wisconsin farmers through the NRCS-
Environmental Quality Incentives Program in 2023.



Conservation Practices and Water Quality

Agriculture is a major contributor to water pollution, primarily through soil erosion, runoff, and
nutrient leaching. Soil erosion is the process by which topsoil is removed from the land by natural
forces or human activity, such as farming. Runoff occurs when water flows over fields, carrying
soils, nutrients, and chemicals into nearby waterways. Nutrient leaching happens when nutrients
from fertilizers, decomposing organic matter, and manure filter down through the soil into ground-
water. Together, these processes make agriculture the leading source of water quality impairment
in US waterways (EPA,[2022).

Cover crops are typically planted between the harvest and planting of main crops and pro-
vide a range of agronomic and environmental benefits. They enhance soil health by improving
structure, increasing organic matter, supporting soil microbiology, and reducing erosion and com-
paction (Service, 2024). In Wisconsin and the Midwest in general, there are three broad types of
cover crops: small grain/grass species (ryegrass, oat, sorghum, barley, wheat), brassicas (radish,
rapeseed, turnips), and legumes/broadleaves (clover, cowpea, hairy vetch, field pea) (Smith et al.,
2019). Their effectiveness in managing nutrient runoff depends heavily on the type used. While
legumes fix atmospheric nitrogen and may increase nitrogen levels in the short term, grasses and
brassicas scavenge residual nitrogen and reduce erosion and nitrate leaching (Blanco-Canqui et al.,
2013} |Gabriel, Vanclooster, and Quemada, [2014]).

In theory, cover crops reduce surface water pollution by limiting soil erosion, nutrient
runoff, and leaching. Cover crops are generally effective at reducing water and sediment runoft;
however, the literature finds mixed impacts on nutrient runoff (Blanco-Canqui et al., 2013} Liu
et al., 2014; Siller, Albrecht, and Jokela, [2016; Smith, Huang, and Haney, |2017). Many studies
do find that cover crops significantly reduce nutrient leaching, particularly in corn-soybean sys-
tems with small grain covers (Feaga et al., 2010; Kaspar et al., 2012} Heinrich, Smith, and Cahn,
2014} Meisinger and Riciglianol, 2017). These benefits stem from nutrient scavenging, where cover
crops absorb excess water and nutrients. Additional advantages include weed and pest suppression,
which can reduce future fertilizer and pesticide needs. However, termination practices and cover
crop selection may increase herbicide use or contribute nutrients in the short term. These compet-
ing processes mean that the relationship between cover crops and water quality is non-linear.

An alternative conservation activity aimed at improving quality, often paired with cover
cropping, is tillage management in the form of reduced till or no till. Soil tillage has traditionally

been used to improve soil quality by aerating the soil, distributing nutrients, suppressing weeds,



and creating a suitable seed bed. However, it is also associated with negative externalities——most
notably soil erosion. Frequent tillage can degrade soil structure, reduce microbial activity, and
even contribute to yield losses.

The USDA defines conservation tillage as practices that manage the amount, orientation,
and distribution of crop and plant residue on the soil surface throughout the year (Natural Resources
Conservation Service, |[2016a,b). The goal of no-till and reduced-till is to minimize erosion, thereby
improving soil health and organic matter while also reducing sediment runoff into surface waters.
A minimum of 30 percent of land coverage is needed to prevent erosion, while conservation greater
than 50 percent is recommended to increase organic matter (Bergtold and Sailus, [2020). Conser-
vation tillage practices include no-till, mulch-till, ridge-till, strip-till, and chisel plowing. Notably,
no-till adoption has been linked to higher farmland values, suggesting that producers recognize
and long-run value of maintaining healthy soils and preventing degradation (Chen et al., 2023).

By leaving residue on the soil surface, reduced tillage creates a protective barrier that slows
water flow during rainfall or snowmelt events, allowing more water to infiltrate the soil rather than
running off into nearby waterways. However, research on how these practices affect surface water
quality, particularly nutrient pollution, shows mixed results. Results seem to vary based on the
specific tillage practices, the slope of the land, the rainfall patterns, the type of nutrient outcomes
measured, and whether water quality was measured at the surface or subsurface level.

Studies routinely show that conservation tillage is effective at reducing sediment and to-
tal solid runoff. Because total phosphorous particles adhere to soil particles, these practices also
decrease total phosphorous runoff. Conservation tillage has been linked to lower phosphorous
losses in surface waters in a number of field simulation studies (Drury et al., |1993}; Sharpley and
Smith, |1994; Zhao et al., [2001; DeLaune and S1j, 2012 [ Mubvumba and DeLaune, 2023)). Extend-
ing beyond field simulations, Yates, Bailey, and Schwindt (2006)) find that watersheds with higher
adoption of no-till cropping have lower amounts of suspended solids and total phosphorous in
stream water. However, other studies find evidence that conservation tillage has null or even pos-
itive effects on nutrients, particularly for nitrogen levels in tile drainage water sources (Kanwar,
Colvin, and Karlen, [1997; [Zhao et al., 2001}, 'Tan et al., 2002; Thoma et al., 2005]).



Table 1: Summary Statistics

Variable Obs Weighted Mean Std. Dev. Min Max
Panel A. HUC 12 Measures

% PL Acres 34276 1.3 7.3 0 100
Dollars (per 10 acres) 34276 0.34 2.1 0 111
2010 Crop % * Budget ($100,000) 34276 1.6 24 0 9.7
HUC 12 Area (acres) 34276 23041 9844 3329 152179
HUC 12 Crop Area (acres) 34276 12199 6222 0 91151
Corn % 34274 31 12 0 100
Soy % 34274 14 7.8 0 100
Small Grain % 34274 3 3 0 100
Cover Crop % 10591 2.9 3.5 0 95
Reduced Tillage % 10591 32 16 0 131
Spring Living Root 10344 32 0.46 1.7 6.9
Panel B. Monitor-Level Measures

Spring P (mg/L) 38462 0.18 0.24  0.006 1.8
All Year P (mg/L) 97272 0.17 0.23  0.006 1.8
Spring TKN (mg/L) 16507 1.2 0.95 0.12 6.6
All Year TKN (mg/L) 40652 1 0.88 0.12 6.6
Spring Ammonia (mg/L) 15664 0.13 0.27 0.0046 2
All Year Ammonia (mg/L) 39720 0.1 0.23 0.0046 2

Note: Figure displays the summary statistics for primary variables. Panel A summarizes the measures that are ag-
gregated or observed at the HUC 12 level. Panel A measures are weighted by HUC 12 agricultural acres, aligning
with regressions. Panel B summarizes measures observed at the water quality monitor level. Panel B is weighted by
agricultural acres times the inverse density of monitors per HUC 12, aligning with water quality regressions.

3 Data

Our empirical approach pairs together panel data on cropping practices, water quality outcomes,
and program participation across Wisconsin subwatersheds. Subwatersheds, or HUC 12s, are the
smallest hydrological unit code delineations of surface water drainage boundaries. [Table T]displays
the summary statistics for the primary variables of interest. The mean and standard deviation of
each variable are weighted by the HUC 12’s crop acreage to reflect the regression weighting that

we later use.
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Producer-Led Watershed Grant Program

We obtained information on the PLW grant program via a Freedom of Information Act request to
Wisconsin DATCP. This data provides a record of the grant amounts awarded to each group, which
HUC 12 watersheds each group covers, and the years that each group exists between 2016 and
2023. displays which HUC 12 watersheds are active in 2023 and the dollar amount
that each of the groups received that year. We obtained additional survey data from DATCP that
they began collecting in 2019, which required active groups to report the number of farmers and
the number of agricultural acres represented by active participants each year

To arrive at our final measurements, we make two assumptions about the raw observations.
First, since survey data on group sizes did not exist until 2019, we make a conservative assumption
to fill in the missing values for the first three years of the program: If a group was active between
2016-2018, we impose the minimum acreage size from that group’s observed sizes later in the
sample. Typically, this was the 2019 reported value since group sizes tend to grow over time.
Second, since groups are often a cluster of neighboring HUC 12 watersheds, and since we only
observed a group’s aggregated size, we assume that the participating acreage percentage is uniform
throughout those eligible watersheds within the same PLW group.

Together, these data form the primary treatment variables of interest for our analysis. The
primary variable of interest is the percentage of a HUC 12’s crop acres that are actively participat-
ing in a PLW group. This variable adjusts for the fact that groups are differentially representative
of a watershed’s farmers, and that some watersheds are treated with more intensity than others. In
additional analyses, we also use the grant award amounts as a regressor of interest. However, since
this is primarily seed funding capped at $40,000, and groups can generate revenue through other
streams (e.g., registration fees, non-profit partnerships, private sponsorships), we believe this to be

a noisy measure of a group’s actual size.

Water Quality

Our water quality data stems from the harmonized version of the US Geological Survey’s Water
Quality Data Portal, called the Standardized Nitrogen and Phosphorus Dataset (SNAPD) (Kraso-
vich et al., [2022). We amass daily nutrient readings at the monitor-level from 2005-2023. Notably,

2«Active participation" was allowed to be a subjective interpretation by the survey respondent, but typically this
captures the number of unique attendees that registered or attended events throughout the year.
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the original dataset only spans the Mississippi/Atchafalaya River Basin from 1985-2018. We ex-
tend the dataset to include Northern Wisconsin and the most recent years by using the same process
described in Krasovich et al.[(2022). This harmonization process allows us to compare standard-
ized readings taken by over 5,600 unique monitors in Wisconsin at different points in time.

We aim to examine the impacts of the PLW program on both phosphorus and nitrogen con-
centrations. These nutrients are closely linked to crop production and the dairy livestock industry,
both of which are prominent in Wisconsin. Nutrient runoff from these activities has contributed to
hypoxic conditions, harmful algal blooms, eutrophication, and the degradation of aquatic ecosys-
tems (Del Rossi et al., [2023)).

Although the ecological effects of nutrient pollution on water quality are well-documented,
the connections between these physical changes and their impacts on people and wildlife remain
relatively understudied. The economic damages associated with excess nutrient pollution are com-
plex and multifaceted. Excess nutrients have been linked to diminished recreational opportunities,
aesthetic degradation, health risks, increased costs of water treatment, and elevated greenhouse gas
emissions (Del Rossi et al., |[2023)).

Specifically, higher phosphorus concentrations have been associated with decreased recre-
ational travel (Keiser, 2019) and reduced angler welfare (Zhang and Sohngen, 2018). Moreover,
the occurrence of harmful algal blooms has been capitalized in housing markets, reflecting their
negative externalities (Wolf, Gopalakrishnan, and Klaiber, 2022; Zhang, Phaneuf, and Schaeffer,
2022). Excess nitrogen levels also impose significant costs, particularly related to drinking water
treatment for both public water systems (Mosheim and Ribaudo, 2017) and private well owners
(Keeler and Polasky, 2014). When nitrate pollution is not effectively managed, it can result in
serious human health impacts (Knobeloch et al., 2000; |Hadachekl, 2024)).

All water quality readings, measured in units of milligrams per liter (mg/L), are taken from
rivers and streams. We exclude outliers, effectively winsorizing our sample. Our primary focus
is on how the program impacts unfiltered Total Phosphorus, which offers the best coverage, the
most observations, and is likely to be more strongly influenced by the practices that PLW groups
implement. The term "total" indicates the water quality sample includes readings for phosphate-
phosphorus, phosphorus, and phosphate plus organic phosphorus (U.S. Environmental Protection
Agency, [2017)). For phosphorus, we rely on unfiltered readings that capture both particulate and

aqueous fractions. The adopted conservation practices are particularly well suited to reduce par-
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is compiled from the Cropland Data Layer. Panel B shows the average ambient phosphorus level in our sample
aggregated to the HUC 12 level.

ticulate (i.e. unfiltered) phosphorus concentrations. El
We measure nitrogen two-fold, as ammonia and Total Kjeldahl Nitrogen (TKN). We retain

both filtered and unfiltered readings since nitrogen readings are more typically taken using the
filtered method (approximately 2/3 of our sample). We also focus our analysis on water quality
readings from March-June when more than 75% of annual runoff occurs in Wisconsin (Zegler,

in.d.). For robustness, we also investigate water quality effects by season and year round.

Conservation Practice Adoption

We obtain our data on conservation practice adoption for the years 2015-2021 through a paid data

use agreement with Regrow Agriculture Inc. Using a proprietary classification model, Regrow an-

3Cover cropping and conservation tillage are aimed at reducing soil erosion. Since total phosphorus particles adhere
to soil particles because of P chemistry adhesive properties, erosion control practices are also effective at decreasing

total phosphorus runoff.
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alyzes Landsat satellite data to detect several different conservation practices and aggregates them
to the subwatershed (HUC 12) level. Specifically, we use Regrow data measuring: (1) the propor-
tion of agricultural land in a HUC 12 practicing cover cropping, (2) the proportion of agricultural
land in a HUC 12 practicing reduced tillage (including no-till), and (3) a proprietary measure from
0 to 7 of “living root" or the extent to which land in a HUC 12 is in an active state of greening.
Cover cropping and reduced tillage are established agricultural conservation practices that aim to
reduce soil erosion and improve soil health. Similar conservation data have been used in a number
of related studies that estimate the impact of federal spending on conservation adoption (Park et al.,

2022)) and the impacts of conservation on crop revenue losses (Aglasan et al., 2023).

Land Use

We compile annual HUC 12 land uses from the remotely sensed Cropland Data Layer (CDL). This
data gives us a granular view at farmers’ cropping decisions year to year that more aggregated
measures do not (e.g., county-level crop area collected by the National Agricultural Statistics Ser-
vice). We construct measurements of total annual agricultural acreage and the percent of crop acres
devoted to specific row crops. To aggregate agricultural acreage, we count acreage devoted to all
crops and pasture landﬂ We include pasture to be inclusive of all types of potentially polluting
agricultural activity, since some PLW groups focus specifically on grazing cattle and manure man-
agement. To test for behavioral change in crop choices, we focus on the percentage of acres that
grow corn, soybeans, and small grains (i.e. wheat, barely, and oats), which are the dominant crops

in the state of Wisconsin.

Weather

We control for weather trends that impact the level of nutrients in the water. We use daily weather
measures from PRISM. We aggregate raster data at the 4x4km grid level to the subwatershed level
to reflect the weather conditions at a water quality monitor at a more aggregate level. Our preferred
specification controls for daily temperature, growing degree days, daily precipitation, precipitation
squared, and cumulative precipitation over the previous week.

We control for daily mean temperature as is common in the literature (Keiser and Shapiro,

4CDL does not distinguish between grasslands not used for grazing and pasture lands used for grazing. Instead,
our measure categorizes both land uses as agricultural land.
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2018; Raff and Meyer, 2022). Temperature impacts nutrient dynamics both directly and indirectly
(Dory et al., 2024). Higher temperatures accelerate weathering, mineralization, and microbial
processes in the nutrient cycle, leading to an increase in the rate and amount of phosphorus released
into the water (Guo et al.,[2024)). We introduce a measure of the monthly growing degree days (0-
29 degrees Celsius) to capture the accumulated heat effects that impact nutrient levels through
plant activity. Higher degree days are associated with plant growth which will increase the take-up
of nutrients, reducing nutrient runoff.

We account for the effects of precipitation in a number of ways. We control for daily pre-
cipitation as well as squared daily precipitationﬂ Rainfall causes surface runoff which transports
nutrients to rivers, increasing nutrient concentration. Conversely, increased river flow can also
dilute nutrient concentrations, making the net effect of precipitation ambiguous (Tilahun et al.,
2024)). To capture this non-linearity, we include both the linear and squared terms of daily precipi-
tation. Additionally, we account for whether the week preceding a water quality reading included
an extreme rainfall event, defined as more than 0.5 inches of rain in a single day. Such heavy
precipitation events can trigger runoff by eroding the soil and carrying sedimentized nutrients into
surface waters. Skidmore, Andarge, and Foltz (2023b) find evidence of significantly higher sur-
face water phosphorus levels a week after heavy precipitation events. This effect is especially
pronounced in the spring—our primary period of analysis—when fertilizers are applied to frozen

or uncultivated fields.

SSURGO Soils

To explore heterogeneity by soil conditions, we pull information from the NRCS Soil Survey
Geographic Database (SSURGO). We aggregate the map units to the subwatershed level to analyze
how soil conditions on the landscape interact with program water quality benefits. We include
variables that represent the erodibility, drainage conditions, and health of the top soil; conservation
practice effectiveness is linked to these soil conditions. The specific variables we include are the
runoff potential class (indicator for how likely soil is to produce runoff during rainfall, based on the
infiltration rate and permeability of the soil), T-factor (a soil loss tolerance factor which measures
the maximum amount of erosion at which the quality of a soil as a medium for plant growth can be

maintained), the drainage class (the natural drainage conditions of the soil that describe how long

3Qur results are robust when we use alternative measures using cumulative precipitation levels from the previous
week.
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the soil stays wet under natural conditions), K-factor (an erodibility value that measures how easily
soil particles detach and move by water), and soil organic matter depletion (the rating for the extent
that soil organic matter has been depleted). For the continuous variables (t-factor and K-factor), we
take a weighted average for the subwatershed and then divide the units by those below and above
the mean. For the categorical variables (runoff, drainage class, and runoff potential), we organize
the subwatersheds into a low and high valued groups. We hypothesize that the PLW program will
be more effective at filtering nutrients in subwatersheds with high runoff potential, low T-factor,

high drainage class, high K-factor, and high depletion levels.

4 Empirical Design

Our empirical strategy measures how local water quality and agricultural practices change in re-
sponse to the spatially and temporally explicit PLW participation.

However, PLW groups are not randomly created and assigned. For example, farmers must
select into the application process in a given year, and that propensity to apply may be correlated
with water quality and agricultural outcomes. Therefore, we implement a shift-share instrumental
variables approach that leverages state-level, temporal changes in the program’s budget (i.e. the
shifts) interacted with the time-invariant percentage of a watershed’s area that is devoted to agricul-
ture in 2010 (i.e. the shares). The intuition behind this approach is that when there is an exogenous
shift in the state program’s budget, the more heavily cropped areas of the state are the areas likely
to respond the most.

To estimate the impact of farmer-led initiatives on local water quality, we estimate the two-

stage equation (TI)):

Windy = ﬁl PLWwy + FXiwdt + o+ ;Ldy + 8iwdy
PLW,,, = m1Cropy, 2010 X Budget, +T1Xy,q; + 04 + Agy + Wiy,

6]

where W Q,4,,,, measures nutrient concentrations on day d of year y. The treatment variable
PLW,,, is the percent of the watershed’s (w) agricultural acres that participate in a PLW group
in year y. In the first stage, PLW,,, is predicted by the instrument Crop,, 2010 X Budget,, which
is the product of the time-invariant 2010 agricultural acreage in watershed w and the state-level,
time-varying budget for the PLW program in year y.

In both stages, control variables in vector Xj,, capture other panel variables that may
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be meaningful to local water quality outcomes (e.g., local weather). Fixed-effects control for
fixed station level characteristics (¢;) and factors that change over time at a state level (ldy, like
commodity prices. Regressions are weighted by 2010 crop acres in the watershed divided by
the number of water quality readings within a watershed in a given monthﬁ Standard errors are
multi-clustered at the HUC 10 and year level to allow for correlation among neighboring HUC 12
watersheds that may be treated simultaneously.

We use a similar strategy to identify the effects of PLW participation on local cropping
outcomes as specified in equation (2). The outcome of interest here is C,,y, which captures the
cropping variable of interest (e.g., % cover crops) in watershed w and year y. These models are
weighted by 2010 crop acres in the HUC 12 watershed. Standard errors are again multi-clustered
at the HUC 10 and year level.

Cuy = BIPLW,py + TXppy + 04 + Ay + €y

(2)
PLW,,, = m1Crop,, 2010 X Budget, + 0 + Ay + Uy

Identifying Assumption

There are two primary identifying assumptions with the instrumental variables model to estimate
the causal impacts on these sets of outcomes. First, the exclusion restriction requires that state-
level expansion of the program cannot be correlated with local watershed outcomes except through
the channel of the watershed groups that form, conditional on location and time-fixed effects. A
threat to this assumption would be if multiple state-level programs or regulations occurred at the
same time and place as PLW groups. In robustness checks, we test the validity of this assumption
by including controls for the presence of other programs and policies most likely to influence water
quality in our setting. As we will later show, our primary estimates are robust to the inclusion of
these controls.

The second identifying assumption is that the instrument is a meaningful predictor of the
endogenous treatment variable. Table [2]shows the results from the first stage. The table shows that
an increase in the state budget for the PLW program multiplied by the 2010 crop acreage percent
is a strong predictor of local watershed participation in the period of the budget shock. Column 1

displays the results from the full sample. Column 2 displays the first stage results for 2015-2021

6Weighting by the inverse number of water quality readings ensures that stations with multiple readings in a month
are not implicitly weighed more heavily than stations that report just once.
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Table 2: First Stage IV: PLWG Participation and Program Budget Expansion

(D (2)
2005-2023 2015-2021
2010 Crop Pct * Program Budget  1.082** 1.307%*
(0.429) (0.576)
Num.Obs. 34276 10591
HUC 12 X X
Year X X

*p < 0.1, ¥ p < 0.05, *** p < 0.01

Note: Regression results are the first-stage estimates of PLW participation on the shift-
share instrument. Column 1 includes the full-sample of years from 2005-2023, and Col-
umn 2 is the sub-sample corresponding to the conservation practice data from 2015-2021.
Standard errors are clustered at the HUC 10 and year level. Regressions are weighted by
the 2010 crop acreage in the HUC 12 watershed.

and corresponds to the subsample of years that we observe conservation practices as discussed
above. This strong first-stage relationship is not surprising given that demand for PLW grants
perennially exceeds the program’s budgetary cap. Therefore, when the budget expands, new PLW

groups are allowed to form in agriculturally intensive areas.

5 Results

We organize our results into five categories. First, we report the direct effect of PLW groups on
water quality. Second, we report the impact of PLW groups on different conservation practices
that are likely the mechanisms behind our headline results. Third, drawing on our first two sets
of results, we discuss the costs and benefits of the PLW program in comparison to other policy
approaches. Fourth, we assess heterogeneity within our main findings. Finally, we conduct a

number of robustness and placebo exercises.

Water quality

Table[3|contains estimates of the effect of PLW groups on surface water phosphorus concentrations
measured in milligrams per liter. In each specification, the independent variable of interest is the

proportion of agricultural acreage in a HUC 12 that belongs to a PLW group. All specifications

18



Table 3: Effect of Producer-Led Groups on Phosphorus Concentrations

Phosphorus (mg/L)

(1) (2) (3) 4) )

% PLW Acres —0.003**  —0.003** —0.003** —0.003** —0.003%**

(0.001) (0.001) (0.001) (0.001) (0.001)
Dep. Var. Mean 0.21 0.21 0.21 0.21 0.21
Observations 38462 38462 38462 38462 38462
F Stat 1248.5 1273.0 1266.8 1256.5 1379.9
Weather Controls X X X
Monitor X X X X
Year X
Month X
Year x Month X X
Year x Day X X
Monitor x Month X

*p <0.1, # p < 0.05, *** p < 0.01

Note: The dependent variable is the phosphorus concentration (mg/L) in levels at the monitor-level.
Standard errors are multi-clustered at the HUC10 and Year. Regressions are weighted by 2010 crop
acres divided by the number of water quality monitors per watershed per month.

instrument for PLW participation using the shift-share approach described earlier. Specification (1)
only includes monitor-, year-, and month-fixed effects as controls. Specifications (2) through (5)
gradually add additional controls. Our preferred specification (specification (5)) includes weather
controls, year-by-day fixed effects, and monitor-by-month fixed effects. In each specification, we
find that an additional ten percentage points of agricultural acreage belonging to a PLW group
decreases phosphorous concentrations by 0.03 mg/L (a 14% reduction). In our preferred specifi-
cation, this result is significant at the 1% level with p< 0.01.

The results in Table @ include observations from March through June, when over 75%
of annual runoff occurs (Zegler, n.d.), and when primary agricultural conservation practices are
in place and likely to be most influential. Figure [3] supports this choice: The figure reports our
coefficient of interest estimated using observations from three different seasons: March-June, July-
October, and November-February. The largest and most significant effects of PLW participation
on water quality occur in the spring months.

Table [] presents the effects of PLW groups on alternative water quality measures both
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Figure 3: Seasonal Effects of PLW Groups on Phosphorus Concentrations

Note: Figure displays the regression coefficients of phosphorus concentrations on PLW participation. The regression
allows for treatment effect heterogeneity by the season of the year in which concentration is observed. Regressions are
weighted by 2010 crop acres in the HUC 12 watershed, divided by the number of monitors per watershed per month.
Standard errors are clustered at the HUC 10 and year level.
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Table 4: Effect of Producer-Led Groups on Alternative Water Quality Measures

Phosphorus (mg/L) TKN (mg/L) Ammonia (mg/L)

(1 2) 3) “) &) (6)
Spring All Year Spring All Year Spring All Year

% PLW Acres  —0.003*** —0.001* —0.004 0.001 —0.001 0.001
(0.001) (0.001) (0.003) (0.002) (0.001) (0.001)

Dep. Var. Mean 0.21 0.19 1.22 1.05 0.20 0.16
Observations 38462 97272 16507 40652 15664 39720
F Stat 1379.9 3690.8 1987.9 4779.7 1629.3  4030.1

#p < 0.1, % p < 0.05, *** p < 0.01

Note: The dependent variables are the phosphorus, TKN, and ammonia concentrations (mg/L) in
levels at the monitor-level. Each regression includes weather controls, year-by-day fixed effects,
and month-by-month fixed effects. Standard errors are multi-clustered at the HUC10 and Year.
Regressions are weighted by 2010 crop acres divided by the number of water quality monitors per
watershed per month.

during the spring (March through June) and throughout the entire year. Columns (1) and (2) report
impacts on phosphorous (column (1) in Table [] is the same as column (5) in Table [3), columns
(3) and (4) report impacts on TKN, and columns (5) and (6) report impacts on ammonia. First,
we note that PLW groups have a larger impact on water quality in the spring than at other times
of the year. Second, we note that PLW groups have a larger impact on phosphorus concentrations
than on nitrogen concentrations (TKN and ammonia). The results in column (3) suggest that a
ten percentage point increase in PLW acres decreases springtime TKN by 0.07 mg/L (less than a
6% reduction). However, this result is only statistically significant at a 10% level and none of the

results for ammonia are statistically significant.

Conservation Mechanisms

We hypothesize that the effects of PLW groups on water quality are likely attributable to changes
in producer behavior, including the increased adoption of conservation practices. We evaluate
this hypothesis in Table [5 Each column uses our preferred specification to evaluate the effect of
PLW participation on a different production practice: cover cropping, reduced tillage, maintenance
of living roots, corn production, soy production, and small grain production. We find that a 10

percentage point increase in PLW acreage increases the prevalence of cover cropping, reduced
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Table 5: Effect of Producer-Led Groups on Cropping Decisions

Cover Crop Reduced Till. Liv. Root  Corn Soy Small Grain

(1 (2) 3) 4) ) (6)
9% PLW Acres 0.280** 0.774%% 0.022*  —0.015 —-0.025 0.075%*
(0.135) (0.387) (0.012)  (0.074) (0.058) (0.037)
Dep. Var. Mean 2.7 27.8 3.2 24.1 10.7 3.1
Observations 10591 10591 10344 34274 34274 34274
F Stat 145.6 145.6 147.7 652.3 652.3 652.3
HUCI12 X X X X X X
Year X X X X X X

*p<O0.1,*p <0.05, *** p < 0.01

Note: The dependent variable is the share of agricultural acreage in a HUC 12 that implements the conservation
practice or that grows a given crop, except for column 3. Column 3 dependent variable, the index of Living
Root (0,7), measuring the degree of perenniality in a HUC 12. Standard errors are clustered at the HUC10 level.
Regressions are weighted by 2010 crop acres in the watershed.

tillage, living roots, and the production of small grains by 2.8 pp, 7.7 pp, 0.2 pp, and 0.8 pp,
respectively. However, PLW participation does not have a statistically significant impact on the
prevalence of corn or soy acreage.

These results are consistent with the explanation that PLW groups drive producers to adopt
conservation practices that maintain living cover on agricultural land and minimize soil disruptions.
These practices, in turn, have been previously shown to improve water quality, especially through

the reduction of phosphorus in surface water.

Effect of Grant Dollars

Our preferred treatment variable above measures the share the total agricultural acreage that is
represented by participating farmers in a PLW group. An alternative treatment measure is the
amount of grant funding awarded to PLW groups from the Wisconsin DATCP. However, it should
be noted that PLW groups typically generate funding from a variety of sources, including nonprof-
its (e.g., the Nature Conservancy) and private sponsorships (e.g., equipment dealerships), and the
observed grant amounts from Wisconsin DATCP may be a poor measure of actual group size and
programming.

We estimate the same model as before, except replacing the endogenous regressor of in-
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Table 6: Effect of Producer-Led Grant Dollars on Phosphorus

Phosphorus (mg/L)

(1 (2) (3) “4) &)

Dollars (per 10 acres) —0.048 —0.045 —0.040 —0.035%* —0.035%*

(0.031) (0.028) (0.024) (0.015) (0.014)
Dep. Var. Mean 0.21 0.21 0.21 0.21 0.21
Observations 38462 38462 38462 38462 38462
F Stat 168.3 175.1 175.0 232.5 269.1
Monitor X X X X
Year X
Month X
Year x Month X X
Year x Day X X
Monitor x Month X

*p < 0.1, %% p < 0.05, ** p < 0.01

Note: The dependent variable is the phosphorus concentration (mg/L) in levels at the monitor-level.
Standard errors are multi-clustered at the HUC10 and Year. Regressions are weighted by 2010 crop
acres divided by the number of water quality monitors per watershed per month.

terest by the amount of grant dollars that a group receives divided by that HUC 12’s agricultural
acreage. Table [0] reports the summary of these results with the same specifications as above. In
general, these results imply that an additional dollar per 10 agricultural acres in a HUC 12 would
reduce phosphorus concentrations by 0.04 (mg/L). For context, groups are currently funded on
average at 0.34 dollars per 10 acres (Table[I)), so this one unit increase reflects a tripling of the cur-
rent program size. These estimates are less precisely estimated than those on participation, likely
stemming from the measurement error associated with using grant award amounts as a proxy for
PLW group size.

We also show how grant dollars affect conservation practice adoption in Table [/. Again,
these results support the primary findings from PLW participation, but with less statistical preci-
sion. Tripling the current budget of the programs would lead to increased cover crop adoption by
4.9 pp (182% increase from current levels) and reduced tillage adoption on 13.9 pp (49% increase

from current levels) of acres.
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Table 7: Effect of Producer-Led Dollars on Cropping Decisions

Cover Crop Reduced Till. Liv. Root  Corn Soy  Small Grain

(1) (2) 3) 4) (5) (0)
Dollars (per 10 acres) 4.907* 13.548* 0.380*  —0.231 —-0.377 1.120%*
(2.645) (7.225) (0.225)  (1.102) (0.899) (0.544)
Dep. Var. Mean 2.7 27.8 3.2 24.1 10.7 3.1
Observations 10591 10591 10344 34274 34274 34274
F Stat 19.8 19.8 20.6 133.5 133.5 133.5
HUCI12 X X X X X X
Year X X X X X X

*p <0.1, ¥ p <0.05, *** p < 0.01

Note: The dependent variable is the share of agricultural acreage in a HUC 12 that implements the conservation
practice or that grows a given crop, except for column 3. Column 3 dependent variable, the index of Living Root (0,7),
measuring the degree of perenniality in a HUC 12. Standard errors are clustered at the HUC10 level. Regressions are
weighted by 2010 crop acres in the watershed.

Downstream Impacts

Upstream practices may impact downstream water quality outcomes. We empirically explore this
in our setting by linking monitors with upstream PLW participation based on upstream-downstream
relationships established by the National Hydrography Dataset (NHD). In cases where multiple up-
stream subwatersheds flow into a single downstream watershed, we construct upstream treatment
in three ways: 1) the simple average of upstream PLW acreage percentage, 2) weighted average
by upstream crop acres, and 3) weighted average PLW acreage percentage by streamflow amounts.
Using these alternative upstream metrics, we estimate our primary specifications on phosphorus
and include upstream treatment. Results from these regressions are presented in Table [AT]

These results show that upstream PLW participation does not lead to a detectable down-
stream effect on phosphorus in our setting across all three methods of constructing upstream treat-
ment. The primary coefficient from our main treatment — the PLW participation in the same HUC
12 — remains approximately the same size with and without inclusion of upstream treatment. The
standard errors of the primary coefficient in the upstream models are larger, but this is likely due to
the limited sample of upstream-downstream relationships, as shown by comparing Column 1 (full
sample) with Column 2 (upstream-downstream sample).
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Heterogeneity

We explore heterogeneous treatment effects along dimensions of group and environmental char-
acteristics. First, Figure displays a coefficient plot that partitions the treatment effect by the
median group’s age (>4 years old), the median group size (>53 farmers), and the median amount
of primary crops they grow (corn and soybean acreage). This figure shows that treatment effects
do not significantly differ across group characteristics, but the confidence intervals appear to be
narrower for older and larger groups and groups that are less corn and soybean intensive.

Second, we investigate how environmental characteristics, like weather and soil, affect the
average treatment effect. Figure [A2]displays coefficients for treatment broken down by median
rainfall in that month, median growing degree days, and by median amount of the HUC 12 area
that is covered by water. Figure [A3]shows results decomposed by SSURGO soil characteristics.
Again, this set of results does not show significant differences across these dimensions. But the
treatment effect is marginally larger and more precise in less rainy months, months with less GDDs,
and areas with more open water (Figure [A2), and in soils that are more highly susceptible to
erosion and runoff (Figure[A3] In general, we cannot draw substantive conclusions about treatment
effect heterogeneity in this setting. If anything, PLW participation seems to improve phosphorus
concentrations the most in areas that we expect the conservation cropping mechanisms to be most

effective, aligning with the agronomic research on these practices.

Robustness Checks

Our results may be biased if other factors that affect water quality simultaneously change in the
same locations as the PLW program. We test this possibility by including control variables for four
other factors that have been shown to impact ambient water quality in this setting. First, if other
local programs or regulations were simultaneously implemented with PLW groups, our estimates
may reflect the cumulative effect of these mechanisms rather than one that is solely attributable
to the PLW program. Perhaps most concerning in this setting is the possibility that counties im-
plement new rules that have been shown to affect local water quality, like county regulations on
nutrient management plans (Skidmore, Andarge, and Foltz, 2023a). We test for possible omitted
variable bias through this channel by including a control variable, taken from Skidmore, Andarge,
and Foltz (2023a), indicating whether the county requires nutrient management planning in a given

year. The results from this regression are presented in Column 1 of Table [A2] and show that our
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primary estimates on PLW participation remain unchanged.

Second, our estimates may be biased if participation in the PLW program was correlated
with participation in other conservation programs, like USDA Environmental Quality Incentives
Program (EQIP) or the Conservation Stewardship Program (CSP). We test how this channel may
affect our results by matching annual county-level EQIP and CSP payments between 2014-2023
and by including funding support from these two programs as control variables in separate re-
gressions[] Results from these models are displayed in columns 2 and 3 of Table Again, the
magnitude of the point estimates remains stable across specifications. These models are marginally
less precise, but this is attributable to the smaller sample size, because EQIP and CSP payment data
are only available for a limited number of years. Furthermore, Table [A3]examines whether PLW
participation is associated with a higher likelihood of EQIP and CSP uptake, but these results show
that there is no meaningful change in these programs due to PLW participation.

Third, simultaneous changes in local agricultural production may also affect local water
quality. In Wisconsin, dairies and dairy cattle are a well-known source of nutrient pollution (Raff]
and Meyer, 2022). We control for changes in county-level dairy cattle populations in column 4 of
Table The marginal effect of PLW groups remains unchanged, and if anything, the estimated
effect is actually more precise by including dairy cattle controls.

In column 5 of Table |[A2] we control for a HUC 8 by year fixed effect in an attempt to
control for all other potential localized factors or policy changes that may change throughout our
sample. This model compares monitor readings within the same HUC 8 and year with and without
a PLW group. This set of fixed effects likely absorbs a meaningful share of identifying variation
in our primary treatment variable. Still, the estimates in this model remain relatively robust to this
granular set of controls.

To support that our results are not sensitive to model specification, Table reflects the
primary results on phosphorus concentrations, but where the outcome is logged concentration.
These point estimates are similar to Table [3] in both magnitude and statistical precision. Lastly,
Table [A5]| presents the results on phosphorus concentrations — in both the spring months and year-
round — when monitor readings are aggregated to the monthly HUC 12 level. The magnitude of

these results are comparable to our main estimates. We lose the ability to control for monitor-level

"County-level USDA NRCS payment data are obtained from publicly available sources, and can be accessed here:
https://www.farmers.gov/data/financial-assistance-download.
8County-level cattle inventory are integrated from the annual NASS Survey.
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unobservables in these models, and thus, the standard errors are slightly larger in these estimates.
These sets of alternative specifications are two common approaches in the literature, and they give

evidence that our results are robust to the modeling and aggregation choices that we made in this

paper.

Randomization Tests

As discussed earlier, the primary estimates rely on the assumption that budgetary changes to the
PLW program are exogenous to farmers’ decisions. We provide descriptive support for this as-
sumption in section 4] We also quantitatively support this assumption with two sets of Fisher ran-
domization tests (Fisher, |[1971). In particular, we construct random permutations of the instrument
and test the likelihood that we would observe the same estimates under alternative distributions of
the shifts and shares over time and across space.

We first randomize the cross-sectional 2010 crop acreage shares across different subwa-
tersheds, Crop,,,2010, but preserve the temporal budgetary shifts across the years, Budget,. We
construct new instrumental variables with the randomized shares and the actual budget level and
re-estimate the reduced-form version of the model. We perform this process 1,000 times, and save
the point estimates from each iteration. This analysis examines whether there are unobserved, tem-
poral confounders that drive the results. If the unexplained errors are correlated with Budget,, we
would expect the distribution of point estimates from this exercise to be significantly different than
zero. Figure presents the distribution of point estimates from this exercise, and Figure
presents the distribution of t-statistics. Both distributions are centered around zero, supporting the
exogeneity of the budgetary shifts, and the point-estimate from the observed data (f = —0.012)
lies outside of the empirical 95% confidence interval.

In the same manner, we perform this exercise, but instead randomize the temporal shifts
across the data and preserve the crop shares. This tests whether unobserved, cross-sectional factors
drive the results. For example, if certain HUC 12s in the state receive disproportionate support from
other programs, and that support affects water quality, we would anticipate that the distribution
of randomized instruments to be statistically different from zero. Figures and [4(d)] present
the distribution of point estimates and t-statistics from this exercise. Again, the distributions are
centered around zero, and the realized estimates are outside the empirical 95% confidence interval.
When taken together, these results support the primary assumption that the results that our results

are driven by the unique observed combination of crop shares and budgetary shifts and validate the
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Table 8: Estimated Conservation Impacts and Costs from PLWG Program

Cover Crop Reduced Till

Marginal Conservation Effects from Program

PLWG acreage pp increase from $100,000 budget increase 1.08 1.08
Conservation pp increase from 1 pp increase in PLWG acreage 0.28 0.77
Conservation pp increase from $100,000 budget increase 0.30 0.83
Total Statewide Acreage Effects from Program
Mean crop acreage of subwatershed 12,199 12,199
Conservation acreage increase from $100,000 at avg. HUC 37 101
Number of active HUC12 Watersheds (2021) 235 235
Additional statewide conservation acres 8,669 23,840
Cost per acre of conservation $11.54 $4.19

IV approach in this paper.

6 Discussion

To contextualize the environmental impacts of the program, we (1) estimate the costs of con-
servation adoption to benchmark against other policy initiatives, (2) compare the magnitude of
phosphorous reductions to those found in other program evaluations, and (3) assign a monetary
value to the phosphorus reductions using the methodology of (Raff and Meyer, 2022).

We use a back-of-the-envelope calculation to estimate the marginal cost of expanding cover
crops and reduced tillage coverage through the program. Table [§] summarizes our approach. We
begin with our first-stage estimates (from Table , which show that an additional $100,000 in the
budget increases program acreage by 1.08 pp. From Table[5] we know that a 1 pp increase in PLW
acreage leads to a 0.28 pp increase in cover crops and a 0.77 pp increase in reduced till. Combining
these estimates tells us the marginal increase in conservation activity: A $100,000 budget increase
translates into a 0.30 pp increase in cover crops and a 0.83 pp increase in reduced tillage.

To estimate the total induced conservation activity, we multiply these marginal effects by
the average agricultural acreage per subwatershed in Wisconsin. This implies that a $100,000
budget increase leads to 37 additional acres of cover crops and 101 additional acres of reduced

tillage per subwatershed. For context, the average subwatershed has 354 cover crop acres and
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3,904 reduced till acres. These estimates represent 10.43% and 2.60% increases, respectively.
There have been 235 subwatersheds involved in the program as of 2021. The total statewide impact
from the budget increase aggregates to approximately 8,700 acres of cover crops and 24,000 acres
of reduced till. Dividing the $100,000 budget increase by the total induced acreage yields marginal
costs of $11.54 per acre for cover crops and $4.19 per acre for reduced tillageﬂ In comparison,
in Wisconsin, the NRCS pays farmers $42-$73 per acre for cover crop and $16-$43 per acre for
reduced tillage (2023).

A 1 percentage point increase in cropland enrolled in the program reduces phosphorus
concentrations in surface water by 0.003 mg/L, representing a 1.42% decline relative to the mean
concentration of 0.21 mg/L. This level of water quality improvement is comparable to that achieved
through other interventions. For instance, similar phosphorus reductions could result from the
removal of 0.75 concentrated animal feeding operations from a watershed (Raff and Meyer, 2022),
implementing nutrient management planning on 60% of watershed acreage (Skidmore, Andarge,
and Foltz, 2023a)), or achieving a 10.3% reduction in fertilizer application within the watershed
(Paudel and Cragol 2021).

To monetize the benefits induced by the PLW program, we translate our phosphorus re-
ductions to a monetized value through a benefits transfer function (U.S. Environmental Protection
Agency, 2009), similar to the approach by |Raff and Meyer (2022). Step-by-step details of this
calculation are provided in Appendix [A2] We find that the PLW grant program provided annual
social benefits ranging from $0.5 - $3 million, exceeding the program’s annual budget threefold
in the most recent years, as shown in Figure The program benefits are largest near popula-
tion centers, like Milwaukee and Madison, and in areas that had high baseline phosphorus levels.
This valuation exercise reveals that, to date the program’s benefits substantially outweigh the costs.
However, given that PLW groups already exist in the most populated areas of the state, there may
be diminishing social returns to expansion of the program into new areas. Agricultural conserva-
tion programs in other states may be most beneficial by prioritizing agricultural production near
population centers.

We show in this paper that an alternative, farmer-led policy approach to nonpoint source
pollution can provide improvements in water quality at a relatively cost-effective rate. Further-

more, we document that these improvements in water quality likely stem from the increased adop-

9Using an alternative estimation based on dollar point estimates from Tables andyields similar results: 12,642
acres of cover crops at $7.91 per acre, and 34,831 acres of reduced tillage at $2.87 per acre.
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Costs and Benefits of PLWG program
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Figure 4: Benefits of the PLW program Over Time and Across Subwatersheds

Note: Panel A compares the estimated benefits of the PLW program to the actual state-level budgets from 2016-2023.
Panel B displays the spatial distribution of willingness to pay (WTP) benefits across HUC 12 subwatersheds. Methods
for the benefits calculations are in Appendix @

tion of key conservation practices, like cover cropping and reduced tillage, four-five times more
cost effectively than traditional conservation subsidy programs. This approach to nonpoint source
pollution mitigation is unique to existing approaches, because it allows the polluters themselves
to make decisions and influence peers. While some caveats exist, the evidence in this paper gives
support that farmer-led conservation initiatives in other locations may be a viable alternative where

first-best approaches are infeasible.

30



References

Aglasan, S., R.M. Rejesus, S. Hagen, and W. Salas. 2023. “Cover crops, crop insurance
losses, and resilience to extreme weather events.” American Journal of Agricultural Economics

106:1410-1434.

Asprooth, L., M. Norton, and R. Galt. 2023. “The adoption of conservation practices in the Corn
Belt: the role of one formal farmer network, Practical Farmers of lowa.” Agriculture and Human
Values 40:1559-1580.

Beaman, L., A. BenYishay, J. Magruder, and A.M. Mobarak. 2021. “Can network theory-based

targeting increase technology adoption?” American Economic Review 111:1918-1943.

Bergtold, J., and M. Sailus. 2020. “Conservation tillage systems in the southeast: production, prof-

itability and stewardship.” Sustainable Agriculture Research and Education (SARE) Program,
pp. -

Blanco-Canqui, H., J.D. Holman, A.J. Schlegel, J. Tatarko, and T.M. Shaver. 2013. “Replacing
fallow with cover crops in a semiarid soil: Effects on soil properties.” Soil Science Society of
America Journal 77:1026—1034.

Burlig, F., and A.W. Stevens. 2024. “Social networks and technology adoption: Evidence from
church mergers in the US Midwest.” American Journal of Agricultural Economics 106:1141—
1166.

Center for International Earth Science Information Network (CIESIN), Columbia University. 2018.
“Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11.” Ac-
cessed: 2025-07-21.

Chen, C.T., G. Lade, J.M. Crespi, and D.A. Keiser. 2019. “Size-based regulations, productivity,
and environmental quality: evidence from the US livestock industry.”, pp. .

Chen, L., R.M. Rejesus, S. Aglasan, S. Hagen, and W. Salas. 2023. “The impact of no-till on agri-
cultural land values in the United States Midwest.” American Journal of Agricultural Economics
105:760-783.

31



Claassen, R., E.N. Duquette, and D.J. Smith. 2018. “Additionality in U.S. Agricultural Conserva-

tion Programs.” Land Economics 94:19-35.

Conley, T., and C. Udry. 2001. “Social learning through networks: The adoption of new agricultural

technologies in Ghana.” American Journal of Agricultural Economics 83:668—673.

Conley, T.G., and C.R. Udry. 2010. “Learning about a new technology: Pineapple in Ghana.”

American economic review 100:35-69.

Del Rossi, G., M.M. Hoque, Y. Ji, and C.L. Kling. 2023. “The economics of nutrient pollution

from agriculture.” Annual Review of Resource Economics 15:105-130.

DeLaune, P., and J. Sij. 2012. “Impact of tillage on runoff in long term no-till wheat systems.” Soil
and Tillage Research 124:32-35.

Dory, F., V. Nava, M. Spreafico, V. Orlandi, V. Soler, and B. Leoni. 2024. “Interaction between
temperature and nutrients: How does the phytoplankton community cope with climate change?”
Science of the Total Environment 906:167566.

Drury, C., D. McKenney, W. Findlay, and J. Gaynor. 1993. “Influence of tillage on nitrate loss in

surface runoff and tile drainage.” Soil Science Society of America Journal 57:797-802.

Drysdale, K.M., and N.P. Hendricks. 2018. “Adaptation to an irrigation water restriction imposed

through local governance.” Journal of Environmental Economics and Management 91:150-165.
EPA. 2022. “Nonpoint Source Pollution: Agriculture.” Accessed: 2025-01-13.

Feaga, J.B., J.S. Selker, R.P. Dick, and D.D. Hemphill. 2010. “Long-term nitrate leaching under
vegetable production with cover crops in the Pacific Northwest.” Soil Science Society of America
Journal 74:186-195.

Fisher, R.A. 1971. The Design of Experiments. Springer.

Fleming, P., E. Lichtenberg, and D.A. Newburn. 2018. “Evaluating impacts of agricultural cost
sharing on water quality: Additionality, crowding In, and slippage.” Journal of Environmental

Economics and Management 92:1-19.

32



Foster, A.D., and M.R. Rosenzweig. 1995. “Learning by doing and learning from others: Human
capital and technical change in agriculture.” Journal of political Economy 103:1176-1209.

Gabriel, J.L., M. Vanclooster, and M. Quemada. 2014. “Integrating water, nitrogen, and salinity in
sustainable irrigated systems: Cover crops versus fallow.” Journal of Irrigation and Drainage
Engineering 140:A4014002.

Griffin, R.C., and D.W. Bromley. 1982. “Agricultural Runoff as a Nonpoint Externality: A Theo-

retical Development.” American Journal of Agricultural Economics 64:547-552.

Guo, L., S. Xiong, B.J. Mills, T. Isson, S. Yang, J. Cui, Y. Wang, L. Jiang, Z. Xu, C. Cai, et al. 2024.

“Acceleration of phosphorus weathering under warm climates.” Science Advances 10:eadm7773.
Hadachek, J. 2024. “Benefits of Avoiding Nitrates in Drinking Water.” Working paper, pp. .

Heinrich, A., R. Smith, and M. Cahn. 2014. “Winter-killed cereal rye cover crop influence on

nitrate leaching in intensive vegetable production systems.” HortTechnology 24:502-511.

Helfand, G.E., and B.W. House. 1995. “Regulating Nonpoint Source Pollution Under Heteroge-

neous Conditions.” American Journal of Agricultural Economics 77:1024—1032.

Jones, B.A. 2019. “Infant Health Impacts of Freshwater Algal Blooms: Evidence from an Invasive

Species Natural Experiment.” Journal of Environmental Economics and Management 96:36-59.

Kanwar, R.S., T.S. Colvin, and D.L. Karlen. 1997. “Ridge, moldboard, chisel, and no-till effects
on tile water quality beneath two cropping systems.” Journal of Production Agriculture 10:227—
234.

Kaspar, T., D. Jaynes, T. Parkin, T. Moorman, and J. Singer. 2012. “Effectiveness of oat and
rye cover crops in reducing nitrate losses in drainage water.” Agricultural Water Management
110:25-33.

Keeler, B.L., and S. Polasky. 2014. “Land-use change and costs to rural households: a case study

in groundwater nitrate contamination.” Environmental Research Letters 9:074002.

Keiser, D.A. 2019. “The missing benefits of clean water and the role of mismeasured pollution.”

Journal of the Association of Environmental and Resource Economists 6:669-707.

33



Keiser, D.A., and J.S. Shapiro. 2018. “Consequences of the Clean Water Act and the Demand for
Water Quality*.” The Quarterly Journal of Economics 134:349-396.

Knobeloch, L., B. Salna, A. Hogan, J. Postle, and H. Anderson. 2000. “Blue babies and nitrate-
contaminated well water.” Environmental health perspectives 108:675-678.

Krasovich, E., P. Lau, J. Tseng, J. Longmate, K. Bell, and S. Hsiang. 2022. “Harmonized Nitrogen
and Phosphorus Concentrations in the Mississippi/Atchafalaya River Basin from 1980 to 2018.”
Scientific data 9.

Kuwayama, Y., S.M. Olmstead, D.C. Wietelman, and J. Zheng. 2020. “Trends in Nutrient-Related
Pollution as a Source of Potential Water Quality Damages: A Case Study of Texas, USA.
Science of the Total Environment 724:137962.

Liu, K., J.A. Elliott, D.A. Lobb, D.N. Flaten, and J. Yarotski. 2014. “Nutrient and sediment losses
in snowmelt runoff from perennial forage and annual cropland in the Canadian Prairies.” Journal
of Environmental Quality 43:1644—1655.

Liu, P., Y. Wang, and W. Zhang. 2023. “The Influence of the Environmental Quality Incentives

Program on Local Water Quality.” American Journal of Agricultural Economics 105:27-51.

Mase, A.S., N.L. Babin, L.S. Prokopy, and K.D. Genskow. 2015. “Trust in Sources of Soil and
Water Quality Information: Implications for Environmental Outreach and Education.” JAWRA
Journal of the American Water Resources Association 51:1656—-1666.

Meisinger, J.J., and K.A. Ricigliano. 2017. “Nitrate leaching from winter cereal cover crops using

undisturbed soil-column lysimeters.” Journal of environmental quality 46:576-584.

Metaxoglou, K., and A. Smith. 2025. “Agriculture’s nitrogen legacy.” Journal of Environmental
Economics and Management, pp. 103132.

Mosheim, R., and M. Ribaudo. 2017. “Costs of nitrogen runoff for rural water utilities: a shadow

cost approach.” Land Economics 93:12-39.

Mubvumba, P., and P.B. DeLaune. 2023. “Water quality effects of cover crop, grazing and tillage
implementation in a long-term no-till wheat system.” Soil and Tillage Research 225:105547.

34



Munshi, K. 2004. “Social learning in a heterogeneous population: technology diffusion in the

Indian Green Revolution.” Journal of development Economics 73:185-213.

Natural Resources Conservation Service. 2016a. “Conservation Practice Standard: Residue and
Tillage Management, No Till (Code 329).” Working paper No. 329-CPS-1, U.S. Department of

Agriculture, September.

—. 2016b. “Conservation Practice Standard: Residue and Tillage Management, Reduced Till
(Code 345).” Working paper No. 345-CPS-1, U.S. Department of Agriculture, September.

Orduina Alegria, M.E., S. Zipper, H.C. Shin, J.M. Deines, N.P. Hendricks, J.J. Allen, G.C. Bohling,
B. Golden, B.W. Griggs, S. Lauer, et al. 2024. “Unlocking aquifer sustainability through

irrigator-driven groundwater conservation.” Nature Sustainability 7:1574—1583.
Ostrom, E. 2010. “Analyzing Collective Action.” Agricultural Economics 41:155-166.

Park, B., R.M. Rejesus, S. Aglasan, Y. Che, S.C. Hagen, and W. Salas. 2022. “Payments from
Agricultural Conservation Programs and Cover Crop Adoption.” Applied Economic Perspectives
and Policy 45:984-1007.

Paudel, J., and C.L. Crago. 2021. “Environmental externalities from agriculture: evidence from

water quality in the united states.” American Journal of Agricultural Economics 103:185-210.

Prokopy, L., K. Floress, J. Arbuckle, S. Church, F. Eanes, Y. Gao, B. Gramig, P. Ranjan, and
A. Singh. 2019. “Adoption of agricultural conservation practices in the United States: Evidence

from 35 years of quantitative literature.” Journal of Soil and Water Conservation 74:520-534.

Raff, Z., and A. Meyer. 2022. “CAFOs and surface water quality: evidence from Wisconsin.”
American Journal of Agricultural Economics 104:161-189.

Service, N.R.C. 2024. “Conservation Practice Standard: Cover Crop (Code 340).” Working paper
No. 340-CPS-1, U.S. Department of Agriculture, May.

Sharpley, A.N., and S. Smith. 1994. “Wheat tillage and water quality in the Southern Plains.” Soil
and Tillage Research 30:33-48.

Siller, A.R., K.A. Albrecht, and W.E. Jokela. 2016. “Soil erosion and nutrient runoff in corn silage

production with kura clover living mulch and winter rye.” Agronomy Journal 108:989-999.

35



Skidmore, M., T. Andarge, and J. Foltz. 2023a. “Effectiveness of local regulations on nonpoint
source pollution: Evidence from Wisconsin dairy farms.” American Journal of Agricultural
Economics 105:1333-1364.

—. 2023b. “The impact of extreme precipitation on nutrient runoff.” Journal of the Agricultural

and Applied Economics Association 2:769-785.

Smith, D., C. Huang, and R. Haney. 2017. “Phosphorus fertilization, soil stratification, and poten-
tial water quality impacts.” Journal of Soil and Water Conservation 72:417-424.

Smith, D.H., M. Broeske, J. Patton, K. Shelley, F. Arriaga, B. Jensen, M.C. Oliveira, B. Briski,
B. Bubolz, R. Rushmann, H. Johnson, G. Schriefer, and M. Sorge. 2019. “Cover Crops 101.”

Smith, S.M., K. Andersson, K.C. Cody, M. Cox, and D. Ficklin. 2017. “Responding to a Ground-
water Crisis: The Effects of Self-Imposed Economic Incentives.” Journal of the Association of

Environmental and Resource Economists 4:985-1023.

Sun, S., B.M. Gramig, and M.S. Delgado. 2025. “Econometric evaluation of the impact of agricul-
tural conservation on nonpoint source pollution: An application to the Wabash River watershed.”

American Journal of Agricultural Economics, May, pp. .

Tan, C., C. Drury, W. Reynolds, J. Gaynor, T. Zhang, and H. Ng. 2002. “Effect of long-term
conventional tillage and no-tillage systems on soil and water quality at the field scale.” Water
science and technology 46:183—-190.

Thoma, D.P., S.C. Gupta, J.S. Strock, and J.F. Moncrief. 2005. “Tillage and nutrient source effects
on water quality and corn grain yield from a flat landscape.” Journal of environmental quality
34:1102-1111.

Tilahun, A.B., H.H. Diirr, K. Schweden, and M. Florke. 2024. “Perspectives on total phosphorus
response in rivers: Examining the influence of rainfall extremes and post-dry rainfall.” Science
of The Total Environment 940:173677.

U.S. Census Bureau. 2025. “Median Household Income in Wisconsin [MEHOINUSWIA646N].”
https://fred.stlouisfed.org/series/MEHOINUSWIA646N, Retrieved from FRED, Fed-
eral Reserve Bank of St. Louis on July 21, 2025.

36


https://fred.stlouisfed.org/series/MEHOINUSWIA646N

U.S. Environmental Protection Agency. 2017. “Best Practices for Submitting Nutrient Data to the
Water Quality eXchange (WQX).” Working paper, U.S. Environmental Protection Agency, June.

—.2009. “Environmental Impact and Benefits Assessment for Final Effluent Guidelines and Stan-
dards for the Construction and Development Category.” Report, U.S. Environmental Protection

Agency, Washington, DC.

Wolf, D., W. Chen, S. Gopalakrishnan, T. Haab, and H.A. Klaiber. 2019. “The Impacts of Harmful
Algal Blooms and E. coli on Recreational Behavior in Lake Erie.” Land Economics 95:455—472.

Wolf, D., S. Gopalakrishnan, and H.A. Klaiber. 2022. “Staying afloat: The effect of algae contam-
ination on Lake Erie housing prices.” American Journal of Agricultural Economics 104:1701—
1723.

Wu, J., RM. Adams, C.L. Kling, and K. Tanaka. 2004. “From Microlevel Decisions to Landscape
Changes: An Assessment of Agricultural Conservation Policies.” American Journal of Agricul-
tural Economics 86:26—41.

Yates, A.G., R.C. Bailey, and J. Schwindt. 2006. “No-till cultivation improves stream ecosystem
quality.” Journal of Soil and Water Conservation 61:14—19.

Zegler, C. n.d. “Phosphorus and Water Quality in Wisconsin Agriculture.” University of Wiscon-
sin Division of Extension - Agricultural Water Quality: https://agwater.extension.wisc.

edu/articles/phosphorus-and-water-quality-in-wisconsin-agriculture/.

Zhang, J., D.J. Phaneuf, and B.A. Schaeffer. 2022. “Property values and cyanobacterial al-
gal blooms: Evidence from satellite monitoring of Inland Lakes.” Ecological Economics
199:107481.

Zhang, W., and B. Sohngen. 2018. “Do US anglers care about harmful algal blooms? A discrete
choice experiment of Lake Erie recreational anglers.” American Journal of Agricultural Eco-
nomics 100:868—888.

Zhao, S.L., S.C. Gupta, D.R. Huggins, and J.F. Moncrief. 2001. “Tillage and nutrient source effects
on surface and subsurface water quality at corn planting.” Journal of Environmental Quality
30:998-1008.

37


https://agwater.extension.wisc.edu/articles/phosphorus-and-water-quality-in-wisconsin-agriculture/
https://agwater.extension.wisc.edu/articles/phosphorus-and-water-quality-in-wisconsin-agriculture/

Appendix

Al Additional Tables and Figures

Table Al: Effect of Producer-Led Groups on Phosphorus Concentration: Robustness to Upstream

Treatment
Phosphorus (mg/L)
(1) (2) 3) 4) )
% PL Acres —0.003*** —0.003* —0.005 —0.002  —0.005
(0.001) (0.002)  (0.005) (0.002) (0.006)
Upstream % PL Acres <0.001
(<0.001)
Upstream % PL Acres (weight=acres) <0.001
(<0.001)
Upstream % PL Acres (weight=streamflow) <0.001
(<0.001)
(<0.001)
Dep. Var. Mean 0.21 0.18 0.18 0.18 0.18
Observations 38448 23473 23473 23472 23473
F Stat 1349.4 646.1 374.1 345.9 384.2
Year x Day X X X X X
Monitor x Month X X X X X
Upstream HUC Sample X X X X

*p<0.1, # p <0.05, *** p < 0.01

Note: The dependent variable is phosphorus concentration (mg/L) in levels at the monitor-level. Standard errors are

multi-clustered at the HUC10 and Year. Regressions are weighted by 2010 crop acres divided by the number of water

quality monitors per watershed per month.
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Table A2: Effect of Producer-Led Groups on Phosphorus Concentration: Robustness to Alternative
Controls

Phosphorus (mg/L)

(D (2) 3) “4) &)

% PL Acres —0.003** —0.002 —0.003* —0.003***  —0.002

(0.001)  (0.001) (0.002) (0.002) (0.001)
Dep. Var. Mean 0.21 0.22 0.22 0.22 0.21
Observations 38462 20676 18097 32532 38462
F Stat 1224.0 873.6 690.6 1210.3 660.8
Year x Day X X X X X
Monitor x Month X X X X X
Controls Co. NMP EQIP$ CSP$ Dairy Cows HUCSxYr

*p <0.1, ** p <0.05, #* p < 0.01

Note: The dependent variable is the phosphorus concentration (mg/L) in levels at the
monitor-level. Standard errors are multi-clustered at the HUC10 and Year. Regressions
are weighted by 2010 crop acres divided by the number of water quality monitors per
watershed per month.

Table A3: Impact of PLW Participation on Uptake of Other Conservation Programs

NMP Regulation EQIP ($1,000) CSP ($1,000) EQIP # CSP #
(D (2) (3) “4) )
% PL Acres —0.008 2.794 1.207 0.449 —0.290
(0.005) (7.508) (4.568) (0.854) (1.389)
Dep. Var. Mean 0.35 491.90 293.07 72.86 109.71
Observations 38462 20676 18097 20676 18097
F Stat 1379.9 873.3 693.8 861.5 693.8
Year x Day X X X X X
Monitor x Month X X X X X

*p <0.1, # p <0.05, *** p < 0.01

Standard errors are multi-clustered at the HUC10 and Year. Regressions are weighted by 2010 crop acres divided by
the number of water quality monitors per watershed per month, consistent with primary specifications.
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Table A4: Effect of Producer-Led Groups on Water Quality: Logged Concentration

Phosphorus (mg/L)

(D (2) (3) 4) (5

% PLW Acres —0.010* —0.009* —-0.008* —0.007* —0.007%%*

(0.005) (0.005) (0.004) (0.003) (0.003)
Dep. Var. Mean —-2.17 —-2.17 —2.17 —2.17 —-2.17
Observations 38462 38462 38462 38462 38462
F Stat 1248.5 1273.0 1266.8 1256.5 1379.9
Monitor X X X X
Year X
Month X
Year x Month X X
Year x Day X X
Monitor x Month X

#p < 0.1, ¥ p < 0.05, ** p < 0.01

Note: The dependent variable is the phosphorus concentration (mg/L) in levels at the
monitor-level. Standard errors are multi-clustered at the HUC10 and Year. Regressions
are weighted by 2010 crop acres divided by the number of water quality monitors per
watershed per month.
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Table AS: Effect of Producer-Led Groups on Phosphorus Concentrations: Aggregated

Phosphorus (mg/L)

Spring All Year
(D () (3) “4) ®) (6)

% PL Acres —0.004 —-0.004 -0.004 —-0.002 -0.002 —0.002

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Dep. Var. Mean 0.15 0.15 0.15 0.14 0.14 0.14
Observations 12514 12514 12514 37035 37035 37035
F Stat 331.6 339.3 292.5 1003.9 1026.7 897.9
HUCI12 X X X X
Year X X
Month X X
Year x Month X X X X
HUCI12 X Month X X

*p < 0.1, ¥ p < 0.05, % p < 0.01

Note: The dependent variable is phosphorus (mg/L) aggregated to the HUC 12 and month level.
Standard errors are multi-clustered at the HUC10 and Year. Regressions are weighted by crop acres
in the HUC 12.

Table A6: First Stage IV: PLWG Dollars Awarded and Program Budget Expansion

2005-2023 2015-2021
2010 Crop Pct * Program Budget  0.070** 0.072%*
(0.028) (0.039)
Num.Obs. 34273 10591
HUCI12 X X
Year X X

*p<0.1, *p <0.05, *** p < 0.01

Note: Regression results are the first-stage estimates of grant dollars awarded per 2010
crop acre on the shift-share instrument. Column 1 includes the full-sample of years
from 2005-2023, and Column 2 is the sub-sample corresponding to the conservation
practice data from 2015-2021. Standard errors are clustered at the HUC 10 and year
level. Regressions are weighted by the 2010 crop acreage in the HUC 12 watershed.
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PLWG Group Heterogeneity on Phosphorus (mg/L)

<4 yrs old —

>=4 yrs old —

<=53 Farmers —

> 53 Farmers — —_—

Less Corn/Soy

More Corn/Soy —

-0.015 -0.010 -0.005 0.000

Figure Al: Heterogeneous Treatment Effects by Group Characteristics

Note: Figure displays the regression coefficients of phosphorus concentrations on PLW participation. The three re-
gressions allow for treatment effect heterogeneity by the median group age, median group size (# of farmers), and
median corn and soy acreage share, respectively. Regressions are weighted by 2010 crop acres in the HUC 12 water-
shed, divided by the number of monitors per watershed per month. Standard errors are clustered at the HUC 10 and
year level.
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Environmental Treatment Heterogeneity on Phosphorus (mg/L)

Less Rain

More Rain —

Less GDD —

More GDD —

Less Open Water —

More Open Water —

I I I
-0.006 -0.004 -0.002 0.000

Figure A2: Heterogeneous Treatment Effects by Environmental Characteristics

Note: Figure displays the regression coefficients of phosphorus concentrations on PLW participation. The three re-
gressions allow for treatment effect heterogeneity by the median rainfall amount, median growing degree days, and
median water area share, respectively. Regressions are weighted by 2010 crop acres in the HUC 12 watershed, divided
by the number of monitors per watershed per month. Standard errors are clustered at the HUC 10 and year level.
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PLWG Soil Heterogeneity on Phosphorus (mg/L)

Low K-factor

High K-factor

Low runoff —

High runoff — ——

Low depeletion

High depletion

I I I I I
-0.008 -0.004 0.000 0.002

Figure A3: Heterogeneous Treatment Effects by Soil Characteristics

Note: Figure displays the regression coefficients of phosphorus concentrations on PLW participation. The three re-
gressions allow for treatment effect heterogeneity along measures of soil erosion and propensity to lose nutrients to
runoff. Regressions are weighted by 2010 crop acres in the HUC 12 watershed, divided by the number of monitors
per watershed per month. Standard errors are clustered at the HUC 10 and year level.
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Figure A4: Placebo Tests for Instrument Validity

Note: Figures display the distribution of coefficients from 1,000 regressions with random sampling permutations
along cross-sectional (a-b) and temporal dimensions (c-d). The red line displays the estimate from the corresponding
regression with the true observed data.
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A2 Description of Benefit Transfer Exercise

We monetize the value of phosphorus reductions following the methods of Raft and Meyer| (2022).
This approach translates changes in ambient phosphorus to changes in the water quality index
(WQI). Then, the WQI serves as an input into the \U.S. Environmental Protection Agency (2009)
benefits transfer function to estimate how households value improvements to surface water quality
under counterfactual scenarios.

We compile nutrient measurements for phosphorus, nitrogen, and total suspended solids
and convert them to water quality sub-indices that range from 10-100 using the equations specified
in |U.S. Environmental Protection Agency| (2009) Table 10—1@ We then calculate the geometric
mean of the three subindices, weighting each component by approximately one-third. The aver-
age water quality index across our Wisconsin sample (2006-2023) is 56.13, indicating conditions
classified as suitable for game fishing.

We investigate a counterfactual world in which we eliminate the PLW program. In a coun-
terfactual dataset, we set the % PLW Acres to O for all observations. We use our main econometric
model equation [I]to predict phosphorus levels under these counterfactual conditions. We then cre-
ate a new water quality index with these counterfactual phosphorus readings, holding nitrogen and
total suspended solids constant. In a scenario with no PLW acres, the mean water quality index is
54.2, signifying a two-point drop in water quality, or a 3% change. We then calculate the differ-
ence in the WQI between the original state of the world and our simulated counterfactual for each
observation.

Next, we use the benefit transfer function to find the willingness to pay (WTP) for water
quality improvements in our settingE-I We then plug in the baseline water quality index, and the
percent change in water quality to solve for the WTP. The WTP per household for the program
is $5.44 per year at the mean and $4.69 at the median. In comparison, the median Wisconsin
household would be willing to pay $11.92 per year to avoid a marginal CAFO in their watershed
according to Raff and Meyer| (2022). This matches intuition, since CAFOs contribute to both

10We convert our ammonia concentrations to nitrogen using nitrogen=0.865 + 7.094 x ammonia, and then calculate
the mean nitrogen value for each subwatershed-year. The total suspended solids subindex requires eco-region specific
thresholds, so we overlay the subwatersheds with the eco-region map and use the eco-region with the largest over-
lap. To address missing nitrogen or total suspended solids data, we substitute the mean of other readings within the
subwatershed; if no subwatershed-level data exist, we use the state-level mean for Wisconsin.

Like Raff and Meyer (2022), we use the assigned parameters in Table 10-11, with the exception of changing the
mail variable to 1. For the income parameter, we use the mean annual household income in Wisconsin, $51,690 in
2023 dollars, from the American community Census in 2006 (U.S. Census Bureau, [2025))
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nitrogen and phosphorus concentrations, but we only observe changes in phosphorus in our setting.

We construct aggregate benefit measures by combining subwatershed-level population data
with WTP estimates. Population estimates stem from a 2015 snapshot of 1km by 1km raster data
from the (Center for International Earth Science Information Network (CIESIN), Columbia Uni-
versity| (2018). For each HUC12, we calculate the average population density by taking the mean
of all intersecting grid cells. We then multiply this density by the area of the HUC12 to estimate
its total population, which sums to approximately 6 million across the state. Assuming an average
household size of 2.3, we derive the approximate number of households in each subwatershed. To
reflect seasonal variation in water quality impacts, we divide estimated benefits by three, assuming
improvements occur primarily during the spring months.

We aggregate by year and find the total statewide WTP per year for the PLW program.
These benefits range from $0.5-$3 million USD per year. We compare these benefits with program
costs in Figure 4(a)] We find that our estimated benefits are about three times the program costs
in the most recent years. However, it is important to note that subwatershed groups often receive
additional funding from other NRCS programs, as well as from private and nonprofit partners. As
a result, our cost estimates do not reflect the full expenses, but only focus on the known expenses
to the state government to facilitate the program.

Finally, we find the total benefits in each subwatershed over our time period to spatially
identify the areas with the highest benefits. We showcase these findings in Figure d(b) We find
that water quality benefits are highest in the southeastern part of the state, near urban centers where
population levels are highest, baseline phosphorus levels are initially high, and the water quality

improvements are estimated to be substantial.
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