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Abstract

Recent extreme events and the disruptions they caused have made food supply

chain resilience a key topic for researchers and policymakers. This paper provides

input into these discussions by evaluating the efficiency and resilience properties of the

leading policy proposals. We develop a conceptual model of a prototype agricultural

supply chain, parameterize the model based on the empirical literature, and conduct

simulations to assess the impacts on resilience and economic welfare of four key policy

proposals: (i) intensified antitrust enforcement to improve market competition, (ii)

subsidization of entry of additional processing capacity, (iii) prevention of price spikes

through anti-price-gouging laws, and (iv) diversification of production and processing

across multiple regions. Results show that some of the policies have potential to improve

supply-chain resilience, but their impacts depend on the existing market structure, and

resilience gains often come at the cost of reduced efficiency.
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1 Introduction

Food supply chains have experienced severe disruptions in recent years, first due to the

COVID-19 pandemic and then due to the conflict between Russia and Ukraine. These

disruptions have motivated researchers and policymakers to assess the resiliency of food

supply chains to extreme shocks and to search for policies to make them more robust to

such events in the future (United Nations Food and Agriculture Organization, 2021; U.S.

Department of Agriculture, 2022).

Extreme shocks to food systems can emanate from a variety of sources, including

pandemics, geopolitical conflicts, and natural disasters. A key element linking possible ex-

treme events is that they are likely to simultaneously impact food supply chains at successive

stages. The COVID-19 pandemic, for example, caused short-run retail demand shocks for

key staples, as consumers attempted to stockpile goods amidst fears of looming shortages,

while the upstream production and processing stages experienced bottlenecks and reduced

production due to processing plant shutdowns and inability to harvest some crops due to

labor shortages (Martinez, Maples, and Benavidez, 2020; Lusk and Chandra, 2021).

The recent experiences have made building more resilient food supply chains that

adapt quickly in the presence of extreme events a clear policy goal for much of the world.

US policymakers have already introduced several measures intended to enhance the resilience

of US food supply chains. They include intensified enforcement of competition laws, subsi-

dizing entry of new processing firms, outlawing profiteering or “price-gouging” in response to

severe market disruptions, and supporting geographic diversification of food systems. This

paper seeks to evaluate the impacts of each of these policy interventions. Although sub-

stantial recent work has indicated the qualitative value of more resilient food supply chains,

considerable debate remains regarding the optimal policy responses (Tukamuhabwa et al.,

2015; Jiang, Rigobon, and Rigobon, 2021) and the implications for stakeholders along the

supply chain (Davis, Downs, and Gephart, 2021).

Food supply chains have evolved through the quest for production efficiency and cost
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savings, but the common perception is that the most efficient supply chain structures may

be the least resilient (Viswanadham and Kameshwaran, 2013; Hobbs, 2021; U.S. Department

of Agriculture, 2022),1 and, thus, strategies to enhance resilience may reduce efficiency of

supply chain operations during normal times. To date, this possible resilience-efficiency

trade-off has been discussed (Hobbs, 2021; Lusk, Tonsor, and Schulz, 2021), but has not

been subjected to rigorous analysis nor quantified. Providing this input to policymakers is a

key focus of our paper. Although we study policies that have been adopted or discussed in

the US and calibrate the model to US data, we expect that our results will have relevance

for other economies grappling with supply chain resilience issues.

We develop a flexible model of a prototype food supply chain, which allows us to

express key trade-offs between efficiency and resilience under a broad set of extreme shocks

and forms of market competition. Ability to depict alternative competition scenarios is a

key consideration because market concentration and intermediaries’ market power have been

cited repeatedly by policymakers as factors that inhibit supply chain resilience (The White

House, 2022; U.S. Department of Agriculture, 2022).

A key innovation of our model relative to others is that we incorporate explicitly that

extreme shocks will generally impact supply chains simultaneously at multiple stages, as

was true with the onset of the COVID-19 pandemic. We simulate the correlated nature of

market shocks by drawing shock variables for the vertical stages of the supply chain—farm

production, processing and retailing, and consumption—from a multi-variate joint distribu-

tion. We show that shocks to farm supply, consumer demand, and processing capacity are

more disruptive the greater their correlation.

We calibrate the model based on contemporary data and recent empirical research for

the US to represent prototype supply chains for key staples. We then utilize Monte-Carlo

simulations to examine the welfare impacts for supply chain participants of different extreme
1U.S. Department of Agriculture (2022) begins its report on agricultural competition by asserting “the

pandemic exposed the risks and dangers created by many of today’s production systems, which value hyper-
efficiency over competition and resiliency” (p.2).
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events under alternative supply chain structures and policy responses. Market efficiency of

alternative supply chain structures is measured in terms of the mean economic surplus they

generate across simulated market outcomes, while market resilience is measured in terms of

the relative variance (coefficient of variation) under a large number of simulated shocks.

We utilize the calibrated model and simulation framework to study four policy propos-

als that have emerged in the resilience debate. First, we investigate the role of concentration

and market power in the processing/retailing sector on resilience of supply chains in re-

sponse to extreme shocks. On January 3, 2022, the Biden Administration announced plans

for stricter enforcement of antitrust laws in the meatpacking industries. In addition, legisla-

tion known as the Meat and Poultry Special Investigator Act of 2022 has been introduced in

the US Congress to give the US Department of Agriculture (USDA) authority to investigate

competition issues in the meat and poultry industries. USDA has announced plans to part-

ner with the US Department of Justice to enforce antitrust laws vigorously and to step up

its own enforcement of competition under the Packers and Stockyards Act (U.S. Department

of Agriculture, 2022). Market power exercised by intermediaries is shown to raise prices to

consumers and depress prices received by farmers (Crespi and MacDonald, 2022), but its

impacts on supply chain resilience are not well understood.

Second, given a baseline level of market power for market intermediaries, we study the

impact of entry into the processing sector on market efficiency and resilience in the event of

extreme shocks. As noted, subsidization of entry into meat processing is a key policy response

being implemented in the US, with the USDA’s Meat and Poultry Processing Expansion

Program representing a key element of this overall commitment. Entry of processors spreads

the shutdown risk across a greater number of plants and may reduce intermediaries’ market

power, but more processing facilities imply lower throughput per plant, generating higher

costs in the presence of size economies.

Third, we study the ramifications of price controls imposed along the supply chain

in response to significant market shocks. These policies take the form of anti-price-gouging

3



laws, or ad hoc price controls imposed by politicians under emergency authority. While price

limits impede intermediaries from exercising market power and prevent extreme price shocks

to consumers, they may exacerbate shortages of products and limit market participants’

abilities to adapt through a price mechanism to changing market conditions. We show that

the impact of price controls depends importantly on the competitive conditions of markets.

In settings where intermediaries’ exercise significant market power, price caps lead to cause

higher output and economic surplus compared to the flexible-price case.

Fourth, we study whether more geographically dispersed production enhances re-

silience. Production of many agricultural commodities in the US has become highly spe-

cialized geographically, which has undoubtedly caused efficiency gains as regions produce

according to their comparative advantages. Proponents of more diverse and localized food

production systems argue that spatial concentration leaves the food supply chain vulnerable

to devastating shocks that impact an entire production region and that local food systems

are more nimble and resilient (Thilmany et al., 2021; Raj, Brinkley, and Ulimwengu, 2022).

Our simulations illustrate the trade-off between reduced volatility due to more dispersed

production risk, and reduced production efficiency and market surplus associated with geo-

graphically dispersed production systems.

Overall, we find that, while some of these policies can reduce relative volatility of

welfare outcomes for farmers and consumers, their impacts on resilience and efficiency de-

pend critically on the structure and competitive conditions in the market. Policies aimed at

increasing resilience must carefully assess the probabilistic nature of extreme events and the

related efficiency trade-offs. This paper facilitates these discussions by providing a quantita-

tive framework that enables the resilience-efficiency trade-offs of the major policy proposals

to be assessed under extreme shocks.
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2 Extreme Events

The COVID-19 pandemic and the Russia-Ukraine conflict in close succession and the dis-

ruptions they have caused have brought heightened awareness to the potential vulnerability

of food supply chains to extreme events (Bellemare, Bloem, and Lim, 2022). The urgency of

investigating food supply chain resilience to such events is magnified by a general recognition

that, moving forward, macro forces are likely to make countries increasingly vulnerable to

such shocks (Marani et al., 2021). For example, the majority of emerging infectious diseases

originate in wildlife animals and transmit through interactions among wildlife, domestic an-

imals, and humans within rapidly changing environments and expanding contacts between

humans and wildlife, accelerating the potential for pandemic events (Wolfe, Dunavan, and

Diamond, 2007; Jones et al., 2013; Allen et al., 2017). A consensus has also emerged that

climate change is associated with increasing incidence and intensity of severe weather events,

including extreme temperatures, extreme precipitation, and drought (Wuebbles et al., 2014;

Cornwall, 2016). Finally, the destructive capacity of geopolitical conflicts is exacerbated by

modern conventional weaponry, as well as the risk of introduction of biological weapons onto

the battlefield.

Table 1 outlines three categories of extreme events and their potential impacts on

stages of the food supply chain. The magnitude of shocks will vary widely depending on

specific contexts, and table 1 is meant to be illustrative, not exhaustive. We make no attempt

to study the most extreme “extinction” events that could occur, such as nuclear conflict or

asteroid or comet impact on the Earth. Such events are predicted to have long-lasting impacts

such that coping with them would require massive stockpiling of food reserves, which is not

considered in this model.

5



Event Farm Supply Consumer De-
mand

Processing Capac-
ity

Pandemics Negative: Shock to
labor and other farm
inputs

Positive: Stockpiling
behavior in short-run
Negative: Recession
and mortality in long-
run

Negative: Health-
related plant shut-
downs

Natural Disas-
ters & Extreme
Weather

Negative: reduced
yields and livestock
fatality

Positive: Stockpiling No likely impact un-
less facilities are de-
stroyed or damaged

Geopolitical Con-
flict

Negative: Reduced
planting and harvest-
ing

Positive: Stockpiling
Negative: Recession
and mortality in long-
run

Negative: Potential
destruction of facili-
ties. Blocked trans-
portation networks

Range of Impact -[5%,15%]a +[40%, 75%]b -[20%, 40%]c

Table 1: Shocks to the Food supply chain Under Extreme Events

aSee Lusk and Chandra (2021) for pandemic impacts on farm labor and Lesk, Rowhani, and Ramankutty
(2016) for extreme weather impacts on cereal production. The Russia/Ukraine conflict threatens up to about
15% of the global wheat supply.

bSee figure 1 for authors’ calculation of consumption shock to beef during COVID-19. See Beatty,
Shimshack, and Volpe (2019) for analysis on stockpiling before extreme weather events.

cSee Lusk, Tonsor, and Schulz (2020); Martinez, Maples, and Benavidez (2020) for documentation of
plant shutdowns due to the COVID-19 pandemic.

3 Model

Resilient food supply chains for the US and many other economies mean an ability to sustain

food production and consumption without undue reliance on international trade because

catastrophic events are likely to curtail trade due to disruptions in transportation networks

and/or country bans imposed on exports and imports (Raj, Brinkley, and Ulimwengu, 2022).2

We, thus, consider a closed-economy model of a supply chain containing farm production,

processing and retailing, and consumption.3

2The Russia-Ukraine conflict provides ample examples of both trade effects. Ukrainian grain and oilseed
exports are mainly transported by ocean vessel emanating from the Port of Odessa and were curtailed due to
a blockade by Russian forces. Many countries curtailed trade with Russia under sanctions. Meanwhile, other
countries imposed export restrictions due to rapidly rising prices for key commodities. Another contempora-
neous example of export bans exacerbating food shortages and raising food prices is the escalation of world
grain prices in 2007-2008 that led to restrictions or bans on grain exports in Argentina, India, Kazakhstan,
Pakistan, Ukraine, Russia, and Vietnam (Mitchell, 2008).

3In addition to the fact that catastrophic events are likely to disrupt international trade, a closed-economy
specification also makes sense given our focus on the US and calibration to US data. Over 87% of food
consumed in the US is produced domestically according to the USDA.
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Given the concerns about the impact of competitive conditions within a supply chain

on its resilience, it is important to work with a model that has flexibility to incorporate

alternative forms of competition. We adapt and extend the flexible oligopoly/oligopsony

market (FOOM) model to incorporate correlated shocks within the supply chain, economies

of size in food processing/marketing, and production emanating from multiple regions.4

The model assumes fixed proportions in production throughout the supply chain in

the sense that a given volume of the farm product is required to produce a unit of the

consumer good. Given fixed proportions, the output produced at each stage of the supply

chain can be equalized given appropriate measurement units and is denoted by Q.

To simplify exposition of the base model, we assume the food product is produced and

processed in a single region (R = 1). The model is later extended to incorporate multiple

production regions as a resilience-enhancing strategy. The inverse supply function of farmers

in the production region is:

P f (Q) = S(Q|X,µ), (1)

where X denotes supply shifters, and µ is a parameter to depict a supply shock.

Consistent with past supply-chain models, e.g., Gardner (1975), Schroeter (1988),

Wohlgenant (1989), Holloway (1991), Sexton (2000), we assume an integrated processing-

retailing sector.5 A number of n homogeneous processors exist in the region. They may

exercise buyer power over farmers and seller power over consumers. Consistent with the

norm for most industries, processors may operate multiple plants, so total plants, denoted

by N , equals or exceeds the number of processors: N ≥ n.
4This model framework emerged from the so-called “new empirical industrial organization” or NEIO, with

key early contributions to the study of oligopoly power by Appelbaum (1982) and Bresnahan (1982). The
framework was extended to an agricultural-markets context and to include intermediaries’ oligopsony power
by Schroeter (1988). Sheldon (2017) provides a recent review of contributions to food-market analysis based
on the NEIO/FOOM model framework.

5An analytically equivalent approach is to assume a separate, competitive food retailing sector, which
operates with constant unit costs.
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Processors collectively face a national demand for the retail product.6 Consumer

demand for the processed product is:

P r(Q) = D(Q|Y, σ), (2)

where Y contains demand shifters, and σ is a parameter to depict shocks to demand.

Suppressing notation for shifters and shock variables, the objective function for a

vertically integrated, profit-maximizing processor j choosing the output qj is:

max
qj

πj = (P r(Q)− P f (Q))qj − cwqj, (3)

where cwqj is the total variable cost for processor j. Fixed costs are irrelevant to the pro-

duction decision and are omitted. We assume that all processors have access to the same

technologies and, thus, this cost function is common among them. Further, consistent with

prior research (Gardner, 1975; Holloway, 1991; Sexton, 2000), we assume constant marginal

costs, cw, but allow cw to be shifted up or down based on the plant number, N , to allow for

possible economies of size, as we explain in the next subsection.7

Given that processors are homogeneous, optimization yields symmetric behavior in

equilibrium (i.e., qj = qk = q). Taking the first-order condition and converting derivatives

to elasticities, we obtain the market equilibrium condition (see Appendix A for derivation):

P r(1− ξ

η
)− cw = P f (1 +

θ

ϵ
), (4)

where 0 ≤ θ ≤ 1 is the processor’s buyer power parameter, 0 ≤ ξ ≤ 1 is the processor’s
6This formulation is consistent with the idea that, although regional markets may exist for bulky and

perishable farm products, final products are less bulky and perishable and easier to transport and, thus,
have a broader geographic market than for procurement of the farm product.

7Each processor j that operates multiple plants, Nj > 1, must allocate its optimal farm-product purchases
and processed product output, q∗j , across its processing facilities. We do not model this allocation process
explicitly, but assume plants are located optimally within the producing region. Hence, each plant operates
with the same marginal costs, cw, and produces an equal share, q∗j /Nj , of the total firm output.
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seller power parameter, η > 0 is the absolute demand elasticity evaluated at the market

equilibrium, and ϵ > 0 is the farm supply elasticity evaluated at the market equilibrium.

The left-hand side represents the processor’s perceived net marginal revenue (PMR) from

selling an additional unit of the final product, while the right-hand side is its perceived

marginal cost (PMC) of acquiring an additional unit of the farm product.

The model parameterizes both buyer and seller market power on the unit interval,

with ξ, θ = 0 denoting perfect competition, ξ, θ = 1 denoting pure monopoly/monopsony, and

ξ, θ ∈ (0, 1) denoting different degrees of oligopoly/oligopsony power. The model does not

presuppose a particular form of market competition, but seeks to measure the implications

of specific departures from perfect competition, which may arise due to unilateral power of

the intermediaries, such as under Cournot-Nash competition, or from tacit or overt collusion.

Analytical Solutions

To obtain analytical solutions and enable simulation, we assign linear functions to the model.

Suppressing the shock parameters in the functions, we let the farm supply and market

demand functions be:

P f (Q) = b+ βQ, (5)

P r(Q) = a− αQ, (6)

where a and b capture the effects of the shifter variables for farm supply and consumer

demand, respectively.

To capture potential economies of size in processing, we specify the marginal process-

ing cost function as:

cw = cw(N). (7)

We allow the marginal cost to be locally constant for small changes in firm-level output,

but to be a function of the total number, N , of processing plants operating in the market.

This specification is a convenient way to study processing efficiency because policy proposals
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involving processor entry or expanding production into multiple regions involve increasing

N . Equilibrium output of each processing plant changes discretely as a function of N , given

the farm supply function. Thus, ∂cw

∂N
> 0 reflects economies of size (i.e., more active plants

imply reduced output per plant and higher unit costs), and ∂cw

∂N
= 0 represents constant

returns to size. Diseconomies of size is not considered due to lack of empirical support.

In the risk-free and competitive world, the equilibrium condition is:

(a− αQ)− cw = b+ βQ, (8)

which yields the competitive equilibrium output of the industry:

Qc =
a− b− cw

α + β
. (9)

The equilibrium retail and farm prices are obtained by plugging Qc into the consumer demand

and farm supply functions, respectively.

Similarly, we find equilibrium output and prices under imperfect competition. For

the linear model the first-order condition, equation 4 becomes:

(a− αQ)(1− ξ

η
)− cw = (b+ βQ)(1 +

θ

ϵ
). (10)

We can derive the market’s risk-free oligopoly-oligopsony equilibrium output, farm price,

and retail price by solving the system consisting of equations 5, 6, and 10:

Qoo =
a(1− ξ

η
)− b(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β(1 + θ

ϵ
)

, (11)

where Qc > Qoo for all positive ξ and θ, and Qoo decreases in ξ and θ. The output per

processing firm is qoo = Qoo

n
. The equilibrium retail price is P r,oo = a − αQoo, and the

equilibrium farm price is P f,oo = b+ βQoo.

Given the parameterized model and equilibrium prices and output, the economic
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surplus measures for consumers, farmers, and processors are straightforward to derive. Con-

sumer surplus (CS) equals 1
2
(a − P r,oo)Qoo, producer surplus (PS) equals 1

2
(P f,oo − b)Qoo,

and processor variable profits equals (P r,oo − P f,oo − cw)Qoo. The dead-weight-loss (DWL)

from market power is given by 1
2
(P r,oo − P f,oo)(Qc −Qoo)− cw(Qc −Qoo).

Measure of Resilience

Researchers have used the variance or standard deviation of a variable or welfare measure

of interest, like industry-level output or CS, to measure volatility under a given shock (e.g.,

Ma and Lusk (2021)). However, to compare the volatility of several random variables with

different mean values, the coefficient of variation (CV), the standard deviation of a variable

divided by its mean, is the most appropriate measure of relative dispersion (Curto and Pinto,

2009).

CV provides a dimensionless measure of relative volatility that is widely used in

economic risk assessments, like financial stability (Pinches and Kinney, 1971; Ozkok, 2015),

socioeconomic inequality (Houthakker, 1959; Braun, 1988), and agronomic yield variability

(Kravchenko et al., 2005). In the context of supply chain resilience, CV measures the relative

dispersion of CS, PS, and intermediary profits under a set of extreme shocks to the system.

It allows us to compare the volatility of welfare for supply-chain participants (producers,

intermediaries, consumers), who have different average surplus measures, across different

policy proposals and supply-chain structures.

Parameterization

To parameterize the model, we normalize the risk-free, competitive equilibrium industry-level

output to 1.0. The corresponding equilibrium retail price on the national market is a−αQc

and also normalized to 1.0. The corresponding demand elasticity at this equilibrium, η,

hence equals 1
α
, and a = 1 + α = 1 + 1

η
.

On the supply side, the competitive farm equilibrium price is f = 1 − cw, where cw
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is a function of the number of processors, N , and characterizes the economies of size that

a processing plant is able to obtain. This farm price is the farm share of the normalized

retail value of a unit of the product under perfect competition. Total farm output is also

1.0. Thus, β = f
ϵ

and b = f(1 − 1
ϵ
), where ϵ is the farm price elasticity of supply at the

competitive equilibrium.

As noted, allowing for the presence of economies of size in processing is critical in

our model. Economies of size in food processing have been studied most extensively for

the meatpacking industries, wherein size economies have been found to exist and to be

substantial. Morrison Paul (2001a) shows that the cost function for US beef processing can

be expressed approximately as C(q) = mqg where m is a multiplier, q is the output of a

processor, marginal cost is c(q) = gmqg−1, and g = ∂ ln(C)
∂ ln(q)

is the cost elasticity of output

with 0 < g < 1 denoting size economies. Morrison Paul (2001a) reports estimates of g ≈ 0.95

for US beef processing based on industry-level data.

Based on a plant-specific analysis of US beef processing, Morrison Paul (2001b) finds

an almost identical estimate for g wherein cattle input and other variable inputs are allowed

to change, but physical plant is fixed, an environment she terms the “intermediate run” case

and nearly identical to the setting we simulate. MacDonald and Ollinger (2000) also report

a nearly identical cost elasticity estimate for US hog processing. Ollinger, MacDonald, and

Madison (2005) found greater size economies for US poultry, with the cost elasticity estimates

for chicken ranging from 0.88 to 0.93. Even greater size economies were found for turkey

processing.

To adapt these size economy estimates to our model structure, we express marginal

processing costs as cw(N) = cNγ, where γ ≥ 0. We equate this expression to marginal cost

in Morrison Paul (2001a) to solve for γ. Here γ = 0 denotes constant returns to size, while

γ > 0 indicates the presence of economies of size – the marginal cost increases as the number

of active plants rises, or as the per plant equilibrium output falls. Given that the equilibrium
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output per homogeneous plant is qj =
1
N

, which falls in N , we have:

mg(
1

N
)g−1 = cNγ. (12)

Letting c = mg, the equation for γ simplifies to (see Appendix A for derivation):

γ = 1− g. (13)

Equilibrium solutions to the model then depend on six parameters (η, ϵ, f , g or γ,

ξ, and θ) that are all pure numbers and describe the market structure, and three exogenous

shock variables to the supply chain. We assigned base values for these parameters by drawing

upon the empirical literature for US meat supply chains. These base values and sources are

displayed in table 2.

Parameter Description Value Source
η |Demand elasticity| 0.7 (Okrent and Alston, 2011)

ϵ Supply elasticity 1 (Chavas and Cox, 1995)

f Farm share 0.3 (USDA-ERS)

g Cost elasticity of output 0.95 (Morrison Paul, 2001a,b; MacDonald and Ollinger, 2000)

γ Economies of size parameter 1− g Authors’ calculation

ξ,θ market power parameters 0, 0.15, 0.3 (Sexton and Xia, 2018)

N Total number of processing plants 40 Garrido et al. (2021)

Table 2: Baseline Parameter Values for Simulation

Correlated Shocks

Destructive events such as a natural disaster, war, or a pandemic that impact labor supplies

may negatively impact both farm supplies and available processing capacity (Wahdat and

Lusk, 2022). These events also simultaneously and positively shock demand due to con-
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sumers attempting to stockpile goods.8 However, to date the literature on food supply chain

resilience has not incorporated the correlated nature of shocks due to extreme events (Davis,

Downs, and Gephart, 2021).

Figure 1: Weekly Beef Slaughter and Retail Sales Relative to Average.
Source: Retail beef sales are from USDA Economic Research Service. Slaughter data are originally
from USDA Agricultural Marketing Service and USDA National Agricultural Statistics Service
and provided by Livestock Marketing Information Center.
Note: Authors’ calculation. The shaded region shows the large deviations from the average in the
weeks immediately after the first COVID-19 cases in the US in March 2020.

To illustrate how extreme events introduce correlated shocks between retail and pro-

cessing stages, figure 1 displays weekly percentage changes from average in beef slaughter

and retail sales in 2020 following onset of the COVID-19 pandemic in the US. The shaded

area reflects the initial weeks of the COVID-19 pandemic, mid-March through the end of

June. The initial weeks of the pandemic induced panic buying and hoarding of available

supplies up to 45% beyond normal retail sales. At the same time, slaughter dropped as

much as 32% below average because processing plants were forced to stop operations due to
8As table 1 notes, extreme events may eventually manifest as negative demand shocks if they result in a

significant increase in mortality and/or cause economic recession. Our analysis focuses on the shorter-term
impacts, wherein positive demand shocks due to consumer stockpiling are likely. Our framework can readily
be adapted to studying the impacts of correlated negative demand shocks, along with negative supply shocks
and processing plant shutdown risk.
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employee illnesses or local ordinances.

Multi-variate joint distributions (or copula) allow for random variables drawn from

differing distributions with dependant structures. Copulas are commonly used in quantita-

tive finance for portfolio risk-management, where the volatility of individual investments that

compose a portfolio are correlated with each other (Fan and Patton, 2014). For supply chain

analysis of extreme events, copulas allow for random draws from a positive half-normal paral-

lel demand shock (σ), negative half-normal parallel supply shock (µ), and binomial processor

shutdown shock (N ′).

Table 1 informs the parameterization of these distributions according to the possible

magnitudes of extreme events in percentage terms. The mean and variance of a half-normal

distributions are specified by a single scale parameter, θiH for i = {D,S}, in the set of

expressions below. Here, the half-normal parameter θDH corresponds to a mean 20% shift in

demand (i.e., mean of σ = 0.5 is 20% of a = 1+η = 2.43), and θSH implies a 30% shift in farm

supply (i.e., mean of µ = 0.1 is a third of f). After parallel shifts, demand and supply curves

have new intercepts a′ = a + σ and b′ = b + µ, respectively. The binomial shutdown shock

determines the number of processing plants that remain active, N ′, from a total number of

plants, N . On average, 75% of the plants remain in operation after an extreme event in our

simulation model.

σ ∼ H(θDH = 2)

µ ∼ H(θSH = 10)

N ′ ∼ B(N, 0.75)

(14)

The magnitude of shocks vary across extreme events, but the values chosen here are emblem-

atic of recent experiential evidence.9 The densities of each shock for our baseline simulations
9The choice of shock distributions, by construction, influences the baseline level of volatility in market

outcomes. Importantly, however, our simulations hold constant the distribution of shocks across simulations
and measure the final outcomes as percentage changes relative to a baseline. While a separate choice of shock
parameters may lead to different baseline levels of volatility, they do not meaningfully alter the simulated
percentage change effects of marginal changes in market structure.
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are presented in figure 2.

Figure 2: Density of shocks from a multi-variate joint distribution.
Note: Left panel displays the density of 100,000 draws from half-normal distributions for the
supply and demand shocks. Right panel displays the density across 100,000 draws from a binomial
distribution, where 25% of plants shut down on average.

Given distributions of shocks, we then draw 100,000 sets of shocks from a multi-

variate joint distribution, in essence creating 100,000 extreme events. The dependant nature

of these shocks are defined by a 3 by 3 covariance matrix, where the off-diagonal elements

specify by the degree of correlation, ρ, between each stage’s shock.

To illustrate the role of correlation between shocks, we simulate over the off-diagonal

elements of the covariance matrix for ρ ∈ [0, 0.5]. Figure 3 displays simulation outcomes

for a supply chain with moderate market power (ξ = θ = 0.15) for alternate values of ρ.

For this illustrative simulation, all off-diagonal elements are simply equal to ρ, but these

elements are fixed at differing baseline values for the policy simulations. The vertical axis

measures percentage changes in CV relative to the independent-shocks setting. Increasing
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the correlation among shocks increases CV of all welfare measures. Intuitively, a stronger

correlation between a and b increases the variance of CS and PS, but has little effect on their

means.10 In the baseline, we allow cor(σ, µ) = 0.25, cor(σ,N ′) = −0.50, and cor(µ,N ′) =

0.10.11

Figure 3: Correlation between shocks at different supply chain stages.
Note: Authors’ creation from numerical simulation. Figure displays the implications of increas-
ingly correlated shocks at different supply chain stages. The vertical axis measures percentage
changes in CV of producer, consumer, and processor surplus under correlated shocks relative to
independent shocks. Welfare outcomes are calculated using the post-shock equilibrium defined in
equation 15.

Post-Shock Equilibrium

When processing plants experience a shutdown shock (i.e., N falls to N ′), we assume that

the market power parameters stay unchanged in the short run, i.e., market power is related

to n, not N . At the same time, consumer demand and farm supply curves shift. We assume

that operational plants can adjust farm-product acquisitions and processed product outputs

to respond to the new consumer demand (a′ − αQ) and farm supply (b′ + β N
N ′Q = b′ + β′Q)

10The mean values of CS and PS increase slightly in ρ because the positive demand shift tends to dominate
the correlated negative shift in farm supply.

11These values are informed by weekly data from the beef supply chain from 2019-2020 and reflect that
shutdowns and stockpiling are likely to be highly correlated, supply shifts and demand shifts moderately
correlated, and supply shifts and processor shutdowns slightly correlated. Our results are not sensitive to
our choices of these correlation values.
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functions after shocks occur.12

Given the new demand and supply function intercepts and supply function slope, the

new industry output is:

Qoo′ =
a′(1− ξ

η
)− b′(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β′(1 + θ

ϵ
)

. (15)

Per plant output is Qoo′

N ′ . Equilibrium prices and welfare measures are computed accordingly.

4 Simulations

We study four widely discussed policy responses intended to protect consumers and farmers

by reducing supply chain volatility in response to market shocks: 1) reducing intermediary

market power, 2) subsidizing the entry of processors, 3) limiting retail price increases through

anti-price-gouging laws, and 4) creating regional diversification of production capacity.

We simulate each policy proposal and report its impact on mean economic surplus and

the relative volatility of surplus (i.e., CV) for farmers, consumers, and market intermediaries.

We present the results for the latter three policy interventions for three alternative levels

of processor market power: perfect competition (ξ = θ = 0), moderate market power (ξ =

θ = 0.15), and high market power (ξ = θ = 0.3) to reflect different market structures in key

agricultural industries.13

Our simulation outcomes are summarized in the following figures. In each figure,

the vertical axis tracks percentage changes in the mean welfare measures and their CV as

market parameters (e.g., market power parameters ξ and θ) change. The percentage changes
12For example, additional farm supplies can be called forth by bringing product from storage or accelerating

harvesting. Processing throughput can be expanded by operating a Saturday shift, as occurred in beef
processing during the COVID-19 pandemic.

13Although our market power parameters are not tied to a particular form of competition, it is useful to
relate them to non-cooperative Cournot competition, where ξ = θ = 0.15 corresponds approximately to the
market power generated by 6–7 symmetric Cournot competitors and to a Hirschman–Herfindahl (HHI) index
of approximately 1,500, a value that the US Department of Justice regards as moderately concentrated in its
Merger Guidelines. ξ = θ = 0.3 corresponds to Cournot competition involving 3 or 4 symmetric firms, and
an HHI index in the range of 2,500 to 3,300, which would be considered as highly concentrated by the DOJ
under the Merger Guidelines. Notably four-firm oligopoly-oligopsony corresponds roughly to the market
structure for the US beef and pork industries (U.S. Department of Agriculture, 2022).
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along the vertical axis are computed relative to the baseline scenario that is depicted as the

leftmost parameter value for each simulation. Appendix B explains mathematically why the

mean surplus and CV curves follow particular patterns and why the curves for CS and PS

tend to follow the same pattern. Though the mathematics determining the patterns may

be somewhat complicated, numerical simulations and outcomes depict the market resilience

and efficiency impacts as we explain below.

Reducing Intermediary Market Power

The economic welfare implications of market power in the food and agriculture sector have

long been a focus for agricultural economists (Sexton and Xia, 2018; Crespi and MacDonald,

2022). However, little is known about the resiliency impacts of intermediary market power.

Figure 4 shows the impacts of market power in the range ξ = θ ∈ [0, 0.3] on resilience

measured in terms of CV (left panel) and mean economic surplus (right panel) based on

100,000 simulations for each value of ξ = θ.

The right panel displays the well-understood result that, as intermediary market

power decreases, consumers and producers gain economic surplus and processors lose profits.

Less understood, however, is that CV for consumers’ and farmers’ surplus also decreases as

the intermediary market power falls, as does CV of processors’ profits. Both the standard

deviation of surplus and its mean value for farmers and consumers rise as the level of processor

market power drops, but mean surplus rises faster than the standard deviation, causing CV

to fall.14

These results are the first demonstration that, in the presence of correlated economic

shocks, consumers and farmers benefit from both higher average economic surplus and re-

duced variability of surplus from policies that induce more competitive supply chains. Thus,

policies designed to increase competition among market intermediaries may represent “win-
14Intermediaries with market power rationally pass on less of a demand or supply shock to farmers and

consumers than would occur in a perfectly competitive market because they internalize a portion of the
impact their output decision has on the farm price and consumer price. Conversely, perfect competitors
treat these prices as given.
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win” outcomes for consumers and farmers.

Figure 4: Impacts of decreasing intermediary market power on market surplus and
resilience.
Note: Authors’ creation from numerical simulations. The vertical axis measures the percentage
changes in CV (left panel) and mean surplus (right panel) relative to the high market power
setting (ξ = θ = 0.3). The left panel displays the reliance gains from competition, and the right
panel shows that producer and consumer surplus increase, and processor profit declines as market
power decreases.

Entry of Processors

One of the primary policy responses in the US to the COVID-19 pandemic and disruptions

caused in the meat supply chains is a USDA initiative which provides $500 million to sup-

port entry of new firms into meat and poultry processing (U.S. Department of Agriculture,

2021).15 The objectives of this policy are to increase competition in local regions and to

reduce bottlenecks in meat processing under shutdown risks.
15While meat processing has received the most intense scrutiny due to allegations of anti-competitive

behavior, other segments of food supply chains have received similar critiques. In early 2022, for example,
USDA launched an investigation into the fertilizer, seed, and food retail markets as a result of heightened
prices (U.S. Department of Agriculture, 2022).
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The potential resiliency improvements from processor entry in our model are twofold.

First, additional processing plants disperse shutdown risks over a larger number of operations,

thus diversifying the risk of losing processing capacity and reducing variance in industry

output. Second, additional processors potentially increase competition among processors,

which, as figure 4 demonstrates, increases average surpluses to farmers and consumers and

decreases the CV of those surpluses.

The main focus of the US policy is to support entry of small-scale processors. Given

our model framework, we simulate entry by processors that are symmetric with the in-

cumbent processors. A limitation of this approach is that it cannot capture the aspects of

small-scale processing and local/regional food systems that remained resilient amidst the

COVID-19 pandemic.16 On the other hand, our approach tends to errs in favor of a policy

to stimulate entry because entrants in our model have the same marginal cost as incum-

bent processors, whereas small-scale entrants will have higher unit costs in the presence of

economies of scale. Symmetric entrants also expand market competition in the model in

ways that small-scale entrants may be unable to accomplish in reality.17 Counterbalancing

the enhanced resiliency and reduced market power from adding processors is that per plant

throughput declines for all plants as more plants are added for a given farm supply function,

meaning that processing plants are less able to exploit the available economies of size.

We simulate adding processors for each of the three market competition scenarios

and assume that market power parameters are dependent on n, reflecting symmetric, non-

cooperative Cournot competition among processors, such that ξ = θ = 1
n
. Each processor

operates N
n

plants, where N is equal to 40 in the baseline in accordance with table 2. There-

fore, as n increases, the total number of processing plants simultaneously increases, dispersing

the risk of plant shutdown.
16Thilmany et al. (2021) argue that such systems involve shorter supply chains, with greater connectivity

among supply-chain participants. These factors, they argue, enable participants in these supply chains to
respond nimbly and flexibly to supply-chain disruptions.

17For example, small food processors may only serve local or regional markets, leaving national concentra-
tion largely unaffected. Appendix C depicts simulations for the case where processor entry does not affect
processor market power, isolating the impacts of entry on plant shutdown risk and plant economies of scale.
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The nearly competitive scenario begins with n = 10 processors and sequentially in-

troduces entering processors to reach n = 13. Processor market power is less consequential

in these settings, ranging from ξ = θ = 0.08 for n = 13 to ξ = θ = 0.10 for n = 10. Similarly,

moderate market power is reflected by n = 6 (ξ = θ = 0.17) to n = 9 (ξ = θ = 0.11) and

high market power by n = 3 (ξ = θ = 0.33) to n = 5 (ξ = θ = 0.20). For each value of n, we

simulate 100,000 correlated shocks to demand, supply, and processing capacity.

(a) Nearly Competitive (b) Moderate Market Power

(c) High Market Power

Figure 5: Impacts of processor entry on average market surplus and resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage
changes in CV (left panels) and mean surplus (right panels) relative to the baseline number
of processors for each scenario.

Figure 5 reports simulation outcomes, with panels (a), (b), and (c) depicting the

results for near perfect competition, moderate market power, and high market power, re-

spectively. Similar to figure 4, lower levels of market power (larger n) are associated with

smaller CV of market surplus. Additionally, mean CS and mean PS overlap and rise as

market power diminishes. The resilience and efficiency improvements are greater for small
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values of n. That is, there are decreasing returns from adding n. Thus, stimulating entry is

most effective in enhancing resilience, when it is done in markets with low n or high market

power ex ante. Figure A1 further shows that these resilience and efficiency improvements are

mostly attributed to the reduced market power effect. When market power is held constant,

the economies of size penalty from reduced throughput per plant unequivocally reduces aver-

age welfare outcomes for all agents. Thus, the efficacy of policies to induce processing plant

entry hinge importantly on whether such entry reduces processor market power.

Anti-Price-Gouging Laws

About two-thirds of US states have price-gouging laws that engage during natural disasters

or declared emergencies and that limit increases in retail prices during such episodes (Morton,

2022). These laws were triggered in a number of jurisdictions in response to the COVID-19

pandemic. Price caps may also be imposed on an ad hoc basis under emergency powers that

political leaders often have.

A key unanswered question, however, is how such anti-price-gouging laws impact

supply chain resilience. When price is not allowed to signal market conditions and equilibrate

the available supply with demand, shortages may ensue, and available products may not be

allocated to the highest-valued consumer. Counterbalancing this effect is the fact that price

ceilings do eliminate sellers’ ability to exercise market power over a range of prices and, thus,

may lead to increased industry output and higher CS and PS.

To illustrate the impact of anti-price-gouging laws, consider the case where retail

prices are fixed at the risk-free (pre-shock) level: P r,oo = a − αQoo as specified in equation

(2).18 Allowing for flexible prices, the new equilibrium quantity produced post-shock, Qoo′ ,

is given by equation (15) and yields the flexible retail price P r(Qoo′) = P r,oo
flex. The impact

of capping the retail price at the pre-shock level, P r,oo = P r,oo
fix , is illustrated by two cases

described in figure 6.
18Anti-price-gouging laws may also be applied to farm prices. Appendix D studies the case of price fixed

at the farm level.

23



Case 1 Case 2

Figure 6: Fixing the post-shock retail price at the pre-shock level.
Note: Authors’ creation. Case 1 illustrates a market setting wherein a price-ceiling eliminates
seller power and does not cause a market shortage. Case 2 illustrates a post-shock equilibrium
where the price ceiling does create a market shortage, with quantity demanded exceeding quantity
supplied at the fixed price.

In Case 1 (left panel), the price ceiling, P r,oo
fix , intersects the new demand curve, D′, at

Qoo′

fix, before it intersects the post-shock PMC curve, PMC ′. For all Q ≤ Qoo′

fix, PMR(Q) =

P r,oo
fix > PMC ′. For any output larger than Qoo′

fix, PMR(Q) < PMC ′. Therefore, the

processors produce Qoo′

fix > Qoo′ and charge the ceiling price, P r,oo
fix . No shortage is created by

the price ceiling. Both CS and PS increase relative to the flexible-price case, with the gain

to consumers (producers) indicated by the pink (gray) shaded areas.

In Case 2, P r,oo
fix intersects (PMC

′
), at point B, before it intersects D′. Processors

maximize profits by producing quantity Qs,oo′

fix , while consumers demand Qd,oo′

fix , resulting in

a market shortage equal to Qd,oo′

fix −Qs,oo′

fix .19

Given a shortage, the market could clear in various ways. For example, product could

be allocated based on queues, and secondary markets could possibly reallocate product from

low- to high-demand consumers. However, secondary resale markets for foods subject to
19Both cases depicted in figure 6 show post-shock output increases relative to the pre-shock equilibrium.

Output may decrease depending on the magnitude of shocks and extent of processor market power. Appendix
D discusses it.
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shortage did not occur with any frequency in the US during the COVID pandemic, nor were

consumer queues common. Rather, available products were allocated seemingly at random

based on when shelves were restocked and consumers happened to arrive at stores.

We, thus, assume that the quantity supplied, Qs,oo′

fix , is randomly allocated among all

consumers who are willing to purchase at P r,oo
fix . Consumer surplus is then computed by:

Qs,oo′

fix

Qd,oo′

fix

∫ Qd,oo′
fix

0

(D′(Q)− P r,oo) dQ. (16)

Failure of product to be allocated to the consumers who value it most represents a welfare

loss from fixed prices that offsets the benefit in reducing processor oligopoly power.

Anti-price-gouging laws typically allow some flexibility in prices post-shock.20 We,

hence, incorporate a continuum of price flexibility in the simulations from the pre-shock

level, P r,oo by setting price P̄ r,oo = P r,oo(1 + ω) for ω ≥ 0. Smaller values of ω denote a

tighter price ceiling. For sufficiently large values of ω, the price ceiling will not bind. We

present simulation results in figure 7 for ω ∈ [0, 0.60], where ω = 0.60 allows sufficient price

flexibility that the ceiling does not bind in our model, while ω = 0 represents no flexibility

and price is fixed at the pre-shock level.

The three panels reflect both of the two possible cases of price ceilings illustrated

in figure 6. Panel (a) depicts a perfectly competitive market, so P̄ r,oo represents Case 2

across all values of ω. Mean CS and PS are increasing in ω, while processor profits are

zero for all ω under perfect competition.21 Larger values of ω are associated with reduced

volatility of welfare. More stringent price ceilings (i.e., ω < 15%) however, increase CV for

both consumers and producers, reducing resilience. CS and PS also fall due to the induced

shortages they create, resulting in a “lose-lose” scenario.
20California’s Penal Code Section 396, for example, prohibits price increases by more than 10% after an

emergency declaration or 50% above the seller’s cost to produce the good or service.
21Under perfect competition, a binding price ceiling leads to welfare losses for both producers and con-

sumers due to the shortage that necessarily occurs in the competitive case and restricting both farm pro-
duction and consumption below the surplus-maximizing levels. See more discussion in Appendix D. For
example, allowing prices to increase by no more than 10% lowers average CS and PS by about 35%.
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Panel (b) illustrates a supply chain with moderate market power. Here, Case 1

emerges and yields higher values for CS and PS for all but the most stringent price ceilings.

These benefits are maximized when ω ≈ 15%. As the price ceiling becomes stricter, a mix of

Cases 1 and 2 holds across the 100,000 simulations. CV of CS and PS also have a nonlinear

relationships with ω. The resilience improvement is maximized at ω = 0 with the CV reduced

by 30% from the flexible-price level. For ω > 20%, the relative volatility for CS and PS is

higher than the flexible-price level. A “win-wiń’ outcome can be achieved for ω ranging from

about 0.05 to 0.15.

Panel (c) depicts a higher level of processor market power and the predominance of

Case 1. Price ceilings increase CS and PS the most in these settings because of the market-

power-reducing effect. The increase in CS and PS is greatest for the most stringent price

ceilings. However, the CV of CS and PS is larger over most of the range of ω. For example,

at ω = 20%, CV of CS and PS is greater by upwards of 40% compared to the market with

no price restriction. Thus, under higher intermediary market power, anti-price-gouging laws

benefit producers and consumers most by transferring surplus to them from intermediaries,

but they do not improve the resilience of supply chains. A win-win outcome for producers

and consumers can, however, be achieved as ω approaches zero.

Figure 8 illustrates the effects of binding price ceilings on market shortages under

different market competition scenarios. The vertical axis measures shortage as the difference

between the normalized quantity demanded and the quantity supplied at the fixed price.

Despite the fact that price is more stable and seller power is essentially eliminated with a

strict anti-price-gouging law, such a law does not necessarily improve farmer and consumer

welfare or reduce the volatility of CS and PS. Market shortages created by these laws are

more severe, the more competitive the underlying market structure. Anti-price-gouging laws

are most likely to increase CS and PS the less competitive is the market, but in these cases,

as figure 7 demonstrates, the laws often increase the volatility of producer and consumer

returns as measured by CV.
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(a) ξ = θ = 0 (b) ξ = θ = 0.15

(c) ξ = θ = 0.3

Figure 7: Impacts of anti-price-gouging laws on market surplus and resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage
changes in CV (left panels) and mean surplus (right panels) relative to a fully flexible price.
The impacts of price ceilings are highly non-linear and depend critically on market structure.
Processor profit is omitted from panel (a) because it is zero in each instance.

Although we have simulated an anti-price-gouging law for a single supply chain, in

reality they paint with a “broad brush.” They generally apply to all food and drink products,

as well as a variety of other products deemed as necessities, regardless of the competitive

structure. The efficacy of these laws, thus, depends importantly on overall competitive

conditions of food markets within the implementing jurisdiction and the stringency with

which price increases are restricted.

Regional Diversity of Farm Production

Agricultural production in the US has become increasingly geographically concentrated as

regions produce according to their comparative advantages. Distributing agricultural pro-

duction and processing across geographically diverse regions and emphasizing localized food
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Figure 8: Market shortage with a price ceiling with different levels of market power.

Note: Authors’ creation from numerical simulations. The vertical axis measures the difference
between normalized quantity demanded and quantity supplied under the level of price ceiling. The
horizontal axis indicates the tightness of the price ceiling; smaller ω is, tighter the ceiling. The
curves show that a price ceiling introduced in a competitive market induces a greater shortage
compared to the same ceiling implemented in an imperfectly competitive market.

systems has been proposed as a resilience strategy (Raj, Brinkley, and Ulimwengu, 2022)

because supply shocks in one region may not impact other regions and geographically diver-

sified food systems may be able to adapt more nimbly to extreme shocks than concentrated

systems (Thilmany et al., 2021; U.S. Department of Agriculture, 2022).22

Although diversifying production of key commodities across multiple regions may

enhance the supply chain’s resilience to some shocks, it will likely come at a cost of reduced

production efficiency (Sexton, 2009). To explicate this trade-off in the simplest way, we

examine the marginal change of expanding from a single production and processing region to

two regions. To ensure analytical solutions, we assume that each region has the same number

of plants, and the plants belong to the same group of symmetric processors. It follows that

the two regions have the same buyer power and seller power. Marginal processing costs are
22A specific contemporary U.S. example is the Local Food Purchase Assistance Cooperative Agreement

Program, authorized through the American Rescue Plan, which invests $400 million for government purchases
of locally produced and processed foods.
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thus cw = c× (RN)γ, where R > 1 denotes the number of production regions.

The retail market remains national as in the baseline case, with demand as specified

in equation (2). We assume that no farm product is transferred between production regions,

thereby allowing local plants in different regions to face different supply functions:

P f
1 (Q1|X1, µ1) = b1 + 2βQ1

P f
2 (Q2|X2, µ2) = b2 + 2βQ2,

(17)

where subscript 1 refers to the base region of farm production and 2 refers to the new region.23

Solving the two-region system, we obtain the equilibrium total output (see Appendix

A for details):

Q̃oo =
a(1− ξ

η
)− b̄(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β(1 + θ

ϵ
)

, (18)

where b̄ = b1+b2
2

. Plugging Q̃oo into the first-order-conditions, we obtain the pre-shock

regional equilibrium output:

Q̃oo
i =

a(1− ξ
η
)− b̄(1 + θ

ϵ
)− cw +

α(1− ξ
η
)

β
(b̄− bi)

2α(1− ξ
η
) + 2β(1 + θ

ϵ
)

, (19)

where i = 1, 2. The term,
α(1− ξ

η
)

β
(b̄− bi), in the numerator is the deviation from half of the

industry output or Qoo
i

2
. Intuitively, the larger bi or the more costly it is to produce farm

outputs in region i, the less the region produces in equilibrium. If b2 > b1, the new region

produces less than the incumbent region due to higher production costs.

The two regions face independent supply shocks (µ1, µ2) and the same demand shock

at the national level in the simulations. The supply function of region 2 has an intercept

equal to b + k where k = f × 0.23 = 0.069, reflecting production costs that are 23% higher

than the first region due to the cost inefficiencies of local production found by Sexton (2009).
23When b1 = b2 = b (here b is the supply function’s intercept in the baseline setup) and if cw is the same

as in the baseline, each region produces exactly one half of the equilibrium output in the one-region scenario,
Qc, and regions have the same supply elasticity under perfect competition.
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Each region also faces independent shutdown risks among its plants, so that N ′
i plants remain

active in region i. As a result, PS differs across regions and equals P f
i Q̃oo

i

2
= β′

iQ̃
oo
i

2
. When

b2 > b1, PS2 < PS1.

The post-shock equilibrium output equals:

Q̃oo′ =
a′(β′

1 + β′
2)(1−

ξ
η
)−B(1 + θ

ϵ
)− (β′

1 + β′
2)c

w

α(β′
1 + β′

2)(1−
ξ
η
) + 2β′

1β
′
2(1 +

θ
ϵ
)

, (20)

where β′
i = β N

N ′
i
and B = b′1β

′
2+b′2β

′
1. Region i’s output is found from the first-order-condition

of the region given Qoo′ :

(a′ − αQoo′)(1− ξ

η
)− cw = (b′i + 2β′

iQ
oo′

i )(1 +
θ

ϵ
). (21)

The simulation results are presented in figure 9. Surpluses decline for all agents and

market power values. There are resilience benefits for producers, but consumers’ CV rises.

When market power is high, for example, the decrease in mean CS is as much as 15% and

that of PS is close to 10%, while the decrease in CV for PS is about 10% and CV for CS

rises by 5%. Consumers suffer from higher relative volatility because mean CS falls faster

than the variation of CS. The divergent trends in the CV for CS and PS imply additional

trade-offs among stakeholders associated with this policy. In general, regional diversification

of production does not represent a favorable policy option if production efficiency in the

new region declines as indicated here. The only benefit is reduced CV of PS from spreading

the production risk across multiple regions. Consumers do not benefit because less efficient

production implies higher prices and more volatility in CS.
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Figure 9: Impacts of adding a production region to market surplus and resilience.
Note: Authors’ creation from numerical simulations. The vertical axis measures the percentage
changes in CV (left panel) and mean surplus (right panel) due to moving from a single production
region to two. The results show resilience benefits to producers, but not consumers. Mean surplus
declines for all agents. Processor profit is omitted from the competitive case because it is zero in
each instance.

5 Conclusion

Experiences of coping with food supply chain disruptions due to COVID-19 and the Russia-

Ukraine conflict, as well as the recognition that extreme events are likely to become more

common moving forward, have spurred interest in food supply chains and policies to improve

supply-chain resilience. This paper has studied the efficiency and resilience impacts of four

of the most prominent strategies being discussed or implemented in the US.

Our supply-chain model allows for any representation of market competition ranging

from perfect competition to pure monopoly/monopsony in the processing stage. This model

flexibility is important in studying market resilience because market power of intermediaries

has often been blamed for supply chains’ lack of resilience, and strategies to enhance food

markets’ competitiveness have been at the forefront of policy discussions. A key innovation of

our model framework is its recognition that extreme events are likely to introduce correlated

31



shocks within a supply chain. We show that market disruptions from extreme events are

more severe the greater the correlation of positive shocks to consumer demand and negative

shocks to farm supply and processing capacity.

An essential contribution of our work is the quantification of the impacts of proposed

policies on resilience under extreme shocks, as measured by the coefficient of variation of

market surplus earned by each group of supply-chain participants, and market efficiency, as

measured by the average market surplus achieved under the policy for each participant. The

efficiency-resilience trade-off is crucial to policy evaluation because the popular belief is that

the quest for efficiency has caused supply chains to become less resilient.

Results of the simulation analysis yield key insights regarding the proposed policies.

Policies designed to stimulate competition among market intermediaries have the potential

to yield win-win outcomes for farmers and consumers by transferring market surplus to them

and reducing the variability of returns under extreme shocks.

Stimulating entry of processors is most effective in supply chains with high market

power. Farmers and consumers benefit from significantly higher market surplus and lower

variability of surplus in these settings. Benefits of entry are much more limited in settings

that are already highly competitive or if entrants are unable to reduce the exercise of market

power by incumbent processors.

The impacts of anti-price-gouging laws also depend critically on the competitive con-

ditions of impacted supply chains. In competitive markets, restrictive price caps can be

highly damaging, reducing consumer and producer surplus due to restricted production, cre-

ating shortages at the restricted price, and increasing the relative variability of surplus. The

laws can be effective when imposed in less competitive markets, where they can increase

market output instead of causing shortages. However, these laws generally reduce resilience

to consumers and producers under extreme shocks, creating a trade-off between efficiency

and resilience. Because anti-price-gouging laws apply widely in emergency situations, their

overall efficacy in food markets hinges on competitive conditions across the full spectrum of
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markets where the laws would apply.

Diversifying production into multiple regions is unlikely to be beneficial regardless

of market competition conditions if production in new regions is less efficient than in the

incumbent regions. In all competitive settings considered, regional diversification reduced

market surplus for all participants due to inefficiencies created in shifting production to less

efficient regions and raising processing costs due to reduced exploitation of size economies.

Regional diversification produced generally small and mixed effects on relative variability of

returns, reducing variability for producers and increasing it for consumers.

A key finding is that widely discussed resilience policies in the US are most effective

in supply chains with high levels of processor market power. They are generally less effec-

tive, or even harmful, in competitive or nearly competitive supply chains. Despite popular

belief that important US food supply chains such as meats exhibit high processor market

power, empirical research, much of it now somewhat dated and subject to methodological

critiques, has generally found small values for θ and ξ (Sexton and Xia, 2018). New studies

of competitive conditions in key food supply chains represent a critical research need.

Though we focus on welfare impacts of policies under extreme shocks, three out of the

four policies studied impact supply chains during normal times, while anti-price-gouging laws

only activate during emergencies. Impacts of the three policies on normal-time surplus for

producers, consumers, and processors follow the same patterns indicated by our simulations

with supply-chain shocks. Specifically, more competitive supply chains, whether due to

stricter enforcement of anti-trust laws or subsidization of entry by new processing firms, also

increase surplus for farmers and consumers during normal periods and provide the added

benefit of being more resilient to extreme events. However, diversifying production into

new, less-efficient regions reduces market surplus for all supply-chain participants in normal

periods, while producing mixed results for resilience under extreme events.

33



References
Allen, T., K.A. Murray, C. Zambrano-Torrelio, S.S. Morse, C. Rondinini, M. Di Marco,

N. Breit, K.J. Olival, and P. Daszak. 2017. “Global Hot Spots and Correlates of Emerging
Zoonotic Diseases.” Nature Communications 8:1124.

Appelbaum, E. 1982. “The Estimation of the Degree of Oligopoly Power.” Journal of Econo-
metrics 19:287–299.

Beatty, T.K.M., J.P. Shimshack, and R.J. Volpe. 2019. “Disaster Preparedness and Disaster
Response: Evidence from Sales of Emergency Supplies Before and After Hurricanes.”
Journal of the Association of Environmental and Resource Economists 6:633–668.

Bellemare, M.F., J.R. Bloem, and S. Lim. 2022. “Producers, Consumers, and Value Chains
in Low- and Middle-Income Countries.” Elsevier, vol. 6 of Handbook of Agricultural Eco-
nomics , pp. 4933–4996.

Braun, D. 1988. “Multiple Measurements of U.S. Income Inequality.” The Review of Eco-
nomics and Statistics 70:398–405.

Bresnahan, T. 1982. “The Oligopoly Solution Concept is Identified.” Economics Letters
10:87–92.

Chavas, J.P., and T.L. Cox. 1995. “On Nonparametric Supply Response Analysis.” American
Journal of Agricultural Economics 77:80–92.

Cornwall, W. 2016. “Efforts to Link Climate Change to Severe Weather Gain Ground.”
Science 351:1249–1250.

Crespi, J.M., and J.M. MacDonald. 2022. “Concentration in Food and Agricultural Markets.”
Elsevier, vol. 6 of Handbook of Agricultural Economics , pp. 4781–4843.

Curto, J.D., and J.C. Pinto. 2009. “The Coefficient of Variation Asymptotic Distribution in
the Case of Non-iid Random Variables.” Journal of Applied Statistics 36:21–32.

Davis, K.F., S. Downs, and J.A. Gephart. 2021. “Towards Food Supply Chain Resilience to
Environmental Shocks.” Nature Food 2:54–65.

Fan, Y., and A.J. Patton. 2014. “Copulas in Econometrics.” Annual Review of Economics
6:179–200.

Gardner, B.L. 1975. “The Farm-Retail Price Spread in a Competitive Food Industry.” Amer-
ican Journal of Agricultural Economics 57:399–409.

Garrido, F., M. Kim, N.H. Miller, and M.C. Weinberg. 2021. “Buyer Power in the Beef
Packing Industry: An Update on Research in Progress.” Working Paper.

Hobbs, J.E. 2021. “Food Supply Chain Resilience and the COVID-19 Pandemic: What Have
We Learned?” Canadian Journal of Agricultural Economics 69:169–176.

34



Holloway, G. 1991. “The Farm-Retail Price Spread in an Imperfectly Competitive Food
Industry.” American Journal of Agricultural Economics 73:979–989.

Houthakker, H.S. 1959. “Education and Income.” The Review of Economics and Statistics
41:24–28.

Jiang, B., D.E. Rigobon, and R. Rigobon. 2021. “From Just in Time, to Just in Case, to
Just in Worst-Case: Simple models of a Global Supply Chain under Uncertain Aggregate
Shocks.” Working Paper No. 29345, National Bureau of Economic Research.

Jones, B.A., D. Grace, R. Kock, S. Alonso, J. Rushton, M.Y. Said, D. McKeever, F. Mutua,
J. Young, J. McDermott, and D.U. Pfeiffer. 2013. “Zoonosis Emergence Linked to Agricul-
tural Intensification and Environmental Change.” Proceedings of the National Academy of
Sciences 110:8399—-8404.

Kravchenko, A.N., G.P. Robertson, K.D. Thelen, and R.R. Harwood. 2005. “Management,
Topographical, and Weather Effects on Spatial Variability of Crop Grain Yields.” Agron-
omy Journal 97:514–523.

Lesk, C., P. Rowhani, and N. Ramankutty. 2016. “Influence of Extreme Weather Disasters
on Global Crop Production.” Nature 529:84–87.

Lusk, J.L., and R. Chandra. 2021. “Farmer and Farm Worker Illnesses and Deaths
from COVID-19 and Impacts on Agricultural Output.” PLOS ONE 16:e0250621, doi:
10.1371/journal.pone.0250621.

Lusk, J.L., G.T. Tonsor, and L.L. Schulz. 2021. “Beef and Pork Marketing Margins and Price
Spreads during COVID-19.” Applied Economic Perspectives and Policy 43:4–23.

—. 2020. “Beef and Pork Marketing Margins and Price Spreads during COVID-19.” ISSN:
2040-5804 Publisher: John Wiley & Sons, Ltd.

Ma, M., and J.L. Lusk. 2021. “Concentration and Resiliency in the US Meat Supply Chains.”
Working Paper No. 29103, National Bureau of Economic Research.

MacDonald, M., James, and M. Ollinger. 2000. “Scale Economies and Consolidation in Hog
Slaughter.” American Journal of Agricultural Economics 82:334–346.

Marani, M., G.G. Katul, W.K. Pan, and A.J. Parolari. 2021. “Intensity and Fre-
quency of Extreme Novel Epidemics.” Proceedings of the National Academy of Sciences
118:e2105482118.

Martinez, C.C., J.G. Maples, and J. Benavidez. 2020. “Beef Cattle Markets and COVID-19.”
Applied Economic Perspectives and Policy 43:304–314.

Mitchell, D. 2008. “A Note on Rising Food Prices.” World Bank Policy Research Working
Paper 4682.

Morrison Paul, C.J. 2001a. “Cost Economies and Market Power: The Case of the U.S. Meat

35



Packing Industry.” The Review of Economics and Statistics 83:531–540.

—. 2001b. “Market and Cost Structure in the US Beef Packing Industry: A Plant-Level
Analysis.” American Journal of Agricultural Economics 83:64–76.

Morton, H. 2022. “Price Gouging State Statutes.” National Conference of State Legislatures.

Okrent, A., and J. Alston. 2011. “The Demand for Food in the United States: A Review of
the Literature, Evaluation of Previous Estimates, and Presentation of New Estimates of
Demand.” Giannini Foundation Monograph 48 , pp. 1–125.

Ollinger, M., J.M. MacDonald, and M. Madison. 2005. “Technological Change and Economies
of Scale in U.S. Poultry Processing.” American Journal of Agricultural Economics 87:116–
129.

Ozkok, Z. 2015. “Financial Openness and Financial Development: An Analysis Using In-
dices.” International Review of Applied Economics 29:620–649.

Pinches, G.E., and W.R. Kinney. 1971. “The Measurement of the Volatility of Common Stock
Prices.” The Journal of Finance 26:119–125.

Raj, S., C. Brinkley, and J. Ulimwengu. 2022. “Connected and Extracted: Understanding
How Centrality in the Global Wheat Supply Chain Affects Global Hunger Using a Network
Approach.” PLOS ONE 17:1–22.

Schroeter, J. 1988. “Estimating the Degree of Market Power in the Beef Packing Industry.”
Review of Economics and Statistics 70:158–162.

Sexton, R.J. 2000. “Industrialization and Consolidation in the U.S. Food Sector: Implications
for Competition and Welfare.” American Journal of Agricultural Economics 82:1087–1104.

Sexton, R.J., and T. Xia. 2018. “Increasing Concentration in the Agricultural Supply Chain:
Implications for Market Power and Sector Performance.” Annual Review of Resource Eco-
nomics 10:229–251.

Sexton, S. 2009. “Does Local Production Improve Environmental and Health Outcomes?”
Agricultural and Resource Economics Update 13:5–8.

Sheldon, I. 2017. “The Competitiveness of Agricultural Product and Input Markets: A Re-
view and Synthesis of Recent Research.” Journal of Agricultural and Applied Economics
49:1–44.

The White House. 2022. “FACT SHEET: The Biden-Harris Action Plan for a Fairer, More
Competitive, and More Resilient Meat and Poultry Supply Chain.”

Thilmany, D., E. Canales, S.A. Low, and K. Boys. 2021. “Local Food Supply Chain Dynamics
and Resilience during COVID-19.” Applied Economic Perspectives and Policy 43:86–104.

Tukamuhabwa, B.R., M. Stevenson, J. Busby, and M. Zorzini. 2015. “Supply Chain Re-

36



silience: Definition, Review and Theoretical Foundations for Further Study.” International
Journal of Production Research 53:5592–5623.

United Nations Food and Agriculture Organization. 2021. The State of Food and Agriculture
2021: Making agrifood systems more resilient to shocks and stresses . No. 2021 in The State
of Food and Agriculture (SOFA), Rome, Italy.

U.S. Department of Agriculture. 2022. “Agricultural Competition: A Plan in Support of Fair
and Competitive Markets: USDA’s Report to the White House Competition Council.”

—. 2021. “USDA Announces $500 Million for Expanded Meat & Poultry Processing Capacity
as Part of Efforts to Increase Competition, Level the Playing Field for Family Farmers
and Ranchers, and Build a Better Food System.”

Viswanadham, N., and S. Kameshwaran. 2013. Ecosystem-Aware Global Supply Chain Man-
agement . World Scientific.

Wahdat, A.Z., and J.L. Lusk. 2022. “The Achilles heel of the U.S. food industries: Exposure
to labor and upstream industries in the supply chain.” American Journal of Agricultural
Economics 104.

Wohlgenant, M. 1989. “Demand for Farm Output in a Complete System of Demand Func-
tions.” American Journal of Agricultural Economics 71:241–252.

Wolfe, N.D., C.P. Dunavan, and J. Diamond. 2007. “Origins of Major Human Infectious
Diseases.” Nature 447:479–483.

Wuebbles, D.J., K. Kunkel, M. Wehner, and Z. Zobel. 2014. “Severe Weather in United
States Under a Changing Climate.” Eros 95:149–150.

37



Appendix

A Equation Derivations

In this appendix, we derive the first order conditions (FOC) and the marginal cost function
in the Section 3. Given the objective function and assuming that plants are of the same size
in equilibrium:

max
q

π ≡ (P r(Q)− P f (Q))q − cwq. (A1)

To solve the function, we take the FOC with respect to q, obtaining:

P r − P f +
∂P r

∂q
q − ∂P f

∂q
q − cw = 0. (A2)

Rearranging the terms produces:

P r(1 +
∂P r

∂q

1

P r
q)− cw = P f (1 +

∂P f

∂q

1

P f
q). (A3)

Further rearranging the terms generates:

P r(1 +
∂P r

∂Q

Q

P r

∂Q

∂q

q

Q
)− cw = P f (1 +

∂P f

∂Q

Q

P f

∂Q

∂q

q

Q
). (A4)

Denote the inverse of absolute demand elasticity, |∂P r

∂Q
Q
P r |, by η > 0, and the inverse

of supply elasticity, ∂P f

∂Q
Q
P f , by ϵ > 0. The term, ∂Q

∂q
q
Q

, is denoted by 0 ≤ ξ ≤ 1 (0 ≤ θ ≤ 1)
and is the seller (buyer) power parameter.

Similarly, We rewrite the equation:

P r(1− ξ

η
)− cw = P f (1 +

θ

ϵ
). (A5)

Plugging in the linear demand and supply function, we find equation 10 in the main text.
To solve the two-region problem, we conduct a similar procedure with two FOCs that

resemble equation 10:

(a− αQ)(1− ξ

η
)− cw = (b1 + βQ1)(1 +

θ

ϵ
)

(a− αQ)(1− ξ

η
)− cw = (b2 + βQ2)(1 +

θ

ϵ
),

(A6)

where the subscript indices the region and Q1 + Q2 = Q. Solving the system of equations
simultaneously, we find the equilibrium total regional outputs Q̃oo as in equation 18. Plugging
Q̃oo to the system of equations above, we find regional equilibrium outputs as specified in
equation 19.

The derivation of the marginal cost function, cw(N) = cNγ, is worth some illustration,
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too. Given equation 12 that mg( 1
N
)g−1 = cNγ, the general expression for γ is:

γ = (1− g) +
ln mg

c

lnN
. (A7)

In Morrison Paul (2001a), the total cost is a function of the plant-level output, q, and
expressed as C(q) = mqg with g ∈ (0, 1]. The cost elasticity of plant-level output per se is
independent from the output.

Similarly in our setup, γ captures the cost elasticity with respect to the number of
plants, N . The number of plants determines the equilibrium plant-level output under perfect
competition. Thus, γ captures the cost elasticity of plant output and should not be a function
of N . To make γ independent from N , we let ln mg

c
= 0 or mg

c
= 1. Thus, we obtain equation

13 in the main text.
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B Coefficient of Variation and Mean Welfare Measures

This appendix develops the mathematics for the CV and mean values of PS and CS. We start
with the mean CS. Recall from Section 3 that the pre-shock CS equals (a−P r,oo)Qoo

2
= α

2
(Qoo)2

where

Qoo =
a(1− ξ

η
)− b(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β(1 + θ

ϵ
)

. (A8)

Shocks change a, b, β, and N and result in a new industry equilibrium output Qoo′ :

Qoo′ =
a′(1− ξ

η
)− b′(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β′(1 + θ

ϵ
)

, (A9)

where β
′
= N

N ′β. The corresponding CS, CS’, can be computed as α
2
(Qoo′)2.

Under shocks, the percentage change in the mean CS is determined by the percentage
change in the industry output as a particular parameter changes (e.g., as market power
increases in figure 4). For the same reason, changes in the mean post-shock PS are also
determined by changes in the industry output. Thus, in most figures, we see that the curves
of changes in the mean post-shock CS and mean post-shock PS overlap.

The two curves deviate slightly in figure 5 because of a rounding issue for integers in
computing β′ = N

N ′β that enters Qoo′ . Given different values of N , the simulated N
N ′ differ.

In general, N
N ′ declines in N .

The curves of changes in the mean post-shock CS and mean post-shock PS curves in
figure 9 also deviate because PS is not computed using the total industry output as CS is; PS
is computed using two regional outputs, respectively, and then adding up the two regional
PS values.

CV equals the standard deviation divided by the mean of CS under shocks. Formally,
CV of CS equals: √∑I

i=1(CS ′
i − C̄S ′)2δi

C̄S ′ =

√√√√ I∑
i=1

(
CS ′

i

C̄S ′ − 1)2δi, (A10)

where I is the number of simulation iterations, δi is the probability of each CS ′
i, and the δi

add up to one. The mean of post-shock CS, C̄S ′, equals
∑I

i=1CS ′
iδi.

Intuitively, the larger the deviation of CS ′
i relative to pre-shock CS, the larger is CS′

i
¯CS′ .

Therefore, CV increases in the relative magnitude of the CS pre and post the shocks. Given
the parameter values, CV for CS increases in CS′

CS
, which is proportional to Qoo′

Qoo , if CS′

CS
> 1.

If CS′

CS
< 1, CV decreases in CS′

CS
.

In our baseline simulations, CS′

CS
> 1 and Qoo′

Qoo > 1 is the typical case where CV

increases in Qoo′

Qoo and hence increases in the ratio of:

R =
a′(1− ξ

η
)− b′(1 + θ

ϵ
)− cw

a(1− ξ
η
)− b(1 + θ

ϵ
)− cw

α(1− ξ
η
) + β(1 + θ

ϵ
)

α(1− ξ
η
) + β′(1 + θ

ϵ
)
. (A11)
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Taking first derivatives and given baseline parameter values, one can show, with com-
plex mathematics, that R rises in ξ if a′ > a (i.e., a positive demand shock) and β′ > β which
echoes figure 4. The complexity of analytical expressions supports the use of simulations as
employed in the main body of this study.

Similarly, given that the post-shock PS equals β
2
(Qoo′)2, one can show that CV of PS

is determined by β′PS′

βPS
. Because β ′

= N
N ′β, β′PS′

βPS
moves with

√
N
N ′

Qoo′

Qoo . The relative resilience

of post-shock CS and post-shock PS follow the same pattern as long as
√

N
N ′

Qoo′

Qoo > 1 and
Qoo′

Qoo > 1. If
√

N
N ′

Qoo′

Qoo < 1 and Qoo′

Qoo > 1, the patterns of CV for CS and PS differ.
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C Processor Entry with No Market Power Effect

In the main text, we study processor entry for a setting where entry reduces processor buyer
and seller power. Another possibility is that entry, especially by small-scale processors, does
not impact the market power of incumbent firms. Figure A1 depicts impacts on CV and
mean surplus for this case.

When market power is held constant, the economies of size penalty from entry un-
equivocally reduces average welfare outcomes for all agents. There is a small resilience gain
for producers when the market power is low (i.e., N is large). The CV for PS decreases,
when N is large because the variance of PS falls faster than the mean PS. The variance
of PS decreases due to spreading production shocks over a larger number of plants. These
results show that the resilience and efficiency improvements in figure 5 largely depend on
the reduced market power effect of processor entry.

(a) Competitive (b) Moderate Market Power

(c) High Market Power

Figure A1: Impacts of adding processors with constant market power on market surplus and
resilience.
Note: Authors’ creation from numerical simulations. Vertical axis measures the percentage changes in CV
(left panels) and mean surplus (right panels) relative to the baseline number of processors for each scenario.

42



D Anti-Price-Gouging Laws: Additional Cases

For both cases in figure 6 in the main text, the output supplied under a fixed price is larger
than the pre-shock equilibrium output, Qoo. We now illustrate a different case in figure
A2 where output at the price cap is smaller than the pre-shock equilibrium output. Here,
sellers have limited market power, and the fixed price, P r,oo, intersects the new PMC curve
(PMC

′) at output Qs,oo′

fix < Qoo. The market shortage is Qd,oo′

fix −Qs,oo′

fix . The welfare impacts
of the shortage under random allocation of limited supply are the same as those discussed
in Section 4.

Figure A2: Fixing the Retail Price under Limited Seller Power

Second, we discuss the impact of a price ceiling imposed on the farm price instead
of on the retail price.24 Figure A3 depicts this case. Absent an anti-price-gouging law,

24For example, the New York Attorney General sued Hillandale Farms Corporation in August 2020 for
illegally gouging the price of eggs.
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equilibrium output occurs where PMR
′ intersects PMC

′ at output Qoo′ , with farm price
P f,oo′ . However, under anti-price-gouging, the farm price ceiling is set at the pre-shock level,
P f,oo.

Portions of the post-shock supply curve, S
′ , above P f,oo are no longer attainable.

The price ceiling, P f,oo, thus, represents the processors’ PMC for purchasing farm outputs.
Processors demand Qd,oo′

fix at this price, but suppliers only provide Qs,oo′

fix . The market shortage
is Qd,oo′

fix −Qs,oo′

fix .

Figure A3: Fixing the Farm Price under Imperfect Competition

Finally, the effect of retail price stickiness under no seller or buyer power is illustrated
in figure A4. Though it shares much similarity with the cases under imperfect competition,
there is no incentive for the processor to reduce the output for higher prices to begin with. As
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a result, imposing the fixed retail price would unambiguously result in a smaller equilibrium
output and a shortage of supply. The processor produces Q prior to the shocks and charges
P . Post the shocks, the price is fixed at Pfix = P . This price meets the new supply curve,
S ′, at Qs

fix which is strictly smaller than Qflex. The shortage of supply is Qd
fix −Qs

fix. Note
that this case applies even if there is buyer power in the market because the key driver for
a shortage is the lack of seller power.

Figure A4: Fixing the Retail Price under Perfect Competition
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