The Impact of Land Use on Water Quality: Evidence

from California Wells

Abstract

Nitrate pollution threatens human health and ecosystems in many regions of the world.
Although scientists agree that nitrogen compounds from human activity, notably agri-
culture, enter groundwater systems, empirical estimates of the impacts of land use on
nitrate concentrations in well water are still lacking. We provide evidence on such im-
pacts by combining nitrate measurements from 6,016 groundwater wells with remotely
sensed California land use data from 2007-2023. We categorize agricultural land uses
according to crops’ propensities to leach nitrogen and further consider urban develop-
ment, in addition to undeveloped land—the default land use. Results show that a 10
percentage point increase in the share of land used to grow high-nitrogen crops within
500 meters of a well is associated with a 11.6% increase in nitrate concentrations a
decade later, while the same increase in urban developments contributes about a 10%
increase. When conditioning on initial nitrate measurements, the impact of nearby
land use attenuates while initial concentrations explain a large share of future varia-
tion in concentrations, demonstrating the persistent nature of nitrates in groundwater.
A calculation based on our regression estimates implies that replacing high-nitrogen
with low-nitrogen crops around sample wells would achieve a 4.6% reduction in nitrate
concentrations, saving municipal water systems $25 million annually. We evaluate the
opportunity cost of such crop substitution to be large; however, targeting only the

crops with the highest propensity to leach nitrates easily passes a cost-benefit test.



1 Introduction

Water pollution from human activity threatens drinking water supplies and ecosystems in
many world regions (Rabotyagov et al., 2014; Van Meter, Van Cappellen, and Basu, 2018;
Rahman, Mondal, and Tiwari, 2021; Abascal et al., 2022; Tozer, 2023; Jones et al., 2023).

In the United States (U.S.), water contamination has been a lingering cause of concern
among the general public and, since the early 1970s, the object of much federal regulatory ac-
tion following the adoption of the Clean Water Act and the Safe Drinking Water Act (Keiser
and Shapiro, 2019b). By several measures, these laws have been successful at improving
the quality of U.S. waterways (Keiser and Shapiro, 2019a). However, contaminants, such as
nitrates, that enter water systems through non-point sources are excluded from the Clean
Water Act because they are hard to directly regulate; yet they increasingly contribute to wa-
ter quality impairment (Olmstead, 2010; DeSimone, McMahon, and Rosen, 2014; Van Metre
et al., 2016). For instance, Pennino, Compton, and Leibowitz (2017) estimate that in 2016,
about 1.5 million people in the U.S. were supplied water from public systems in violation of
the U.S. Environmental Protection Agency maximum contaminant level (MCL) for nitrates
of 10 mg/L of nitrate-nitrogen. For households outside of public water system boundaries, a
2014 study of 3,621 randomly sampled private groundwater wells found that 4.1% exceeded
the nitrate MCL (DeSimone, McMahon, and Rosen, 2014).

Nitrate contamination of U.S. groundwater resources poses large social costs, largely
through damages to public health and drinking water treatment (Keeler et al., 2016; Mosheim
and Ribaudo, 2017). The regulatory MCL for nitrates in public water systems was established
to mitigate the risk of infant methemoglobinemia, commonly known as “blue baby syndrome”
(U.S. EPA, 1977). The limit was set based on public health studies conducted during the
1950s (Walton, 1951; Fewtrell, 2004) and did not comprehensively reflect other potential
health hazards (Ward et al., 2018). Reviews of the epidemiological literature reveal that,
beyond methemoglobinemia, nitrate-contaminated drinking water has been most strongly

associated with gastric cancer (Picetti et al., 2022) along with colorectal cancer, thyroid



disease, and neural tube defects (Ward et al., 2018). Importantly, these health conditions
exhibit positive correlations with nitrate concentrations even below regulatory thresholds.

Nitrates in water systems originate from numerous sources, both anthropogenic such as
urban runoff, gardens, wastewater treatment, or septic systems, and natural such as nitrogen
fixation or atmospheric deposition (Wakida and Lerner, 2005; Lockhart, King, and Harter,
2013). However, studies point to nitrogen leaching from farmland as a leading cause of
increasing ambient nitrate concentrations not only in surface water systems (Isbell et al.,
2013; Hendricks et al., 2014; Paudel and Crago, 2021) but also in groundwater (Lockhart,
King, and Harter, 2013; Rosenstock et al., 2014; Ransom et al., 2018), a primary source
of drinking water for over 130 million U.S. residents (DeSimone, McMahon, and Rosen,
2014). Nitrogen leaching from agricultural fields into groundwater occurs under the combined
effects of residual synthetic or organic fertilizers not absorbed by crops, decomposition of
crop residue after harvest, and seepage of water—whether rainfall or irrigation—into soils.
Because manure is costly to transport and typically used as fertilizer, local cattle populations
may also contribute to groundwater nitrate contamination. Nitrate leaching from topsoil
into groundwater can take many years or even decades, thus current nitrate contamination
is likely to be the result of past agricultural practices (Boyle et al., 2012; Lockhart, King,
and Harter, 2013). In addition, once they reach the water table, nitrates may persist in
groundwater for long periods of time, a phenomenon consistent with the empirical findings
of this study. The lag between source and destination and the legacy nature of nitrates
in groundwater have historically posed a challenge for the measurement of this agricultural
externality and the evaluation of its potential policy remedies.

Groundwater nitrate pollution has received increased research attention in recent years.
According to Abascal et al. (2022), the annual number of peer-reviewed studies on the
topic increased from 20 in 1990 to 280 in 2021. Existing studies, most of them in the
environmental science literature, tend to employ highly mechanistic (Kourakos et al., 2012) or

non-parametric (Ransom et al., 2017) models of nitrate emissions, attenuation, and transport



through soils and aquifers. Even economic studies of water contamination from agriculture
tend to resort to mechanistic biophysical models to represent leaching from fields once farmer
behavior has been accounted for (Mérel et al., 2014; Lark et al., 2022; Weng et al., 2024).
Our paper complements this literature by providing reduced-form evidence on the re-
sponse of groundwater nitrate concentrations to local land use decisions based on observa-
tional data. To this end, we combine water-quality measurements from approximately 6,000
California wells over 17 years with cattle inventories and remotely sensed land use data. Our
main econometric model identifies groundwater quality impacts from spatial variation in
land use shares and cattle populations that are plausibly exogenous to groundwater nitrate
concentrations. Specifically, informed by the groundwater hydrology literature on plausible
leaching times, we regress mean nitrate concentrations measured from wells in recent years
(2019-2023) on local cattle populations as well as mean land use shares measured twelve
years prior (2007-2011) in the vicinity of each well, conditional on a suite of biophysical
and regional controls. In an alternate set of regressions, we also control for initial nitrate
concentrations, which allows us to assess the persistent nature of groundwater nitrates.
Interestingly, initial nitrates alone explain over 76% of the variation in later nitrate con-
centrations, and in models that control for initial nitrates, coefficients on initial nitrate con-
centrations are statistically indistinguishable from one while land uses and cattle populations
generally have small and statistically insignificant effects. These empirical results are con-
sistent with both the legacy nature of nitrates in groundwater and the fact that land uses,
even if they determine nutrient leaching and ultimate groundwater contamination, evolve
very slowly over time. Indeed, our data show that over the period 2007-2023, land uses
around sample wells changed very little in comparison to cross-sectional differences across
wells. As a result, initial concentration levels are likely correlated with both past and sub-
sequent land use patterns, rendering identification of incremental contamination empirically
challenging. Yet, to the extent that land use shares can be considered stationary, a regression

that omits initial conditions captures long-run nitrate pollution effects from persistent land



use patterns, an interpretation we follow in the remainder of our analysis.

Regressions without initial nitrates indicate that a 10 percentage point increase in the
share of land used to grow high-nitrogen crops—such as tree nuts or corn—within 500 me-
ters of a well relative to undeveloped land is associated with an 11.6-19.7% increase in ni-
trate concentrations, while a 10 percentage point increase in the share of land used to grow
low-nitrogen crops—such as rice and alfalfa—is associated with a 6.3-8.3% increase.! By
comparison, a 10 percentage point increase in the share of land used for low-intensity (resp.,
high-intensity) urban development is linked to a 10.1-15% (resp., 10.5-16.2%) increase in
nitrate concentrations. Similar to Meyer and Raff (2025), we find that an additional 1,000
dairy cows, which falls short of the average dairy herd size in California, within one kilometer
of a well increases nitrate concentrations by 16-20%.? Overall, these effects document the
critical role of land development and human activities on groundwater quality.

We use our regression estimates and a revealed-preference model of crop choice adapted
from Costinot, Donaldson, and Smith (2016) to provide insights into the economic magnitude
of land use externalities from cropping systems on drinking water quality. Specifically, we
find that replacing high-nitrogen with low-nitrogen crops around our sample of wells could
achieve a 4.6% reduction in nitrate concentrations, saving California drinking water systems
approximately $25 million annually in treatment costs. We evaluate the opportunity cost
of such crop substitution to be about $36 million, exceeding the anticipated water quality
benefits. However, we also show that a more targeted land use policy that only replaces
crops with the highest nitrate-leaching potential (a subset of high-nitrogen crops), while
delivering a lower reduction in nitrate concentrations (1.02%), easily passes the cost-benefit

test. Taken together, these findings suggest that land use incentives could be part of an

! Classification of crops into high-nitrogen and low-nitrogen categories is based on the “Nitrogen Hazard
Index,” which measures the propensity to leach nitrogen compounds under common cultural practices and
a crop’s typical nitrogen demands. Whether the effects of high-nitrogen crops are statistically different from
those of low-nitrogen crops in our analysis depends on the choice of controls.

2As of 2019, California had about 1.7 million dairy cows, 1,330 dairy farms, and an average of 1,278
milking age cows per dairy (Marklein et al., 2021) The average number of dairy cattle within one kilometer
of a well in our sample is only 10, as many wells have no dairy operations in their vicinity.



efficient portfolio of nitrate management actions in our setting alongside other incentives
such as reductions in fertilizer intensity, provided that they target the set of crops with the
most severe propensity to leach nitrates given current fertilization practices.?

The intersection of heavy reliance on groundwater, urban development pressure, and
proximity of wells to input-intensive and highly diversified agriculture makes California a
compelling setting to measure pollution externalities from human activity. California has
suffered from groundwater nitrate problems for decades (Harter et al., 2012) and studies
indicate that the issue has gotten worse in recent times (Burow et al., 2013). Indeed, Figure
1 shows a rising trend in the number of California public water systems violating the nitrate
MCL since the 1990s.* This trend is largely driven by increasing violations in small, rural
public water systems, in contrast to the violations among larger systems that occurred in
the 1980s. Nitrate contamination is central to many ongoing public policy deliberations
regarding the competing interests of agricultural and residential groundwater users (Lubell,
Blomquist, and Beutler, 2020) amidst efforts by California regulators to deter agricultural
practices believed to most significantly contribute to nitrate leaching. Notably, the Irrigated
Lands Regulatory Program requires growers to implement nutrient management plans to
prevent nitrogen fertilization in excess of crop uptake (California Water Boards, 2024b;
California Water Boards, State Water Resources Control Board, 2025).

Groundwater nitrate concentrations depend on the interplay of human, chemical, biolog-
ical, and hydrological actions responsible for the nitrate emissions below the plant root zone

and the subsequent transport of nitrates through subterranean systems (McMahon et al.,

3Nutrient management planning requirements for commercial agriculture started in 2003 in California’s
Central Valley (California Water Boards, Central Valley Regional Water Quality Control Board, 2023) and
were thus already in place for the better part of our study period. Further reductions in fertilizer application
could be incentivized, but there is no guarantee that they would deliver nitrate abatement at a lower marginal
cost than agricultural land use changes.

4The California Health and Safety Code §116275 (2024) defines a public water system as delivering water
for human consumption to at least 15 service connections used by yearlong residents or at least 25 people
daily for 60 or more days per year.

5In addition, between 2000 and 2010, the Central Valley Regional Water Board implemented the Waste
Discharge Requirements General Order for Existing Milk Cow Dairies and the Central Valley Salinity Alter-
natives for Long-Term Sustainability program, which require land managers to engage in nitrate monitoring
and reporting and adopt nutrient management plans (Harter, 2015).
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Figure 1: Count of California public water systems in violation of the nitrate maximum
contaminant level, and affected population

Source: U.S. Environmental Protection Agency (2023).

2008). The primary empirical challenge is controlling for the many features that determine
the path—over both time and space—of nitrate molecules from the point at which they
appear on the land surface. We address this challenge with the following strategies. First,
we focus on land use within a 500-meter radius of the well, encompassing a region where
nitrates accumulate within our effective lag length of twelve years (California Department
of Health Services, 2000; Harter, 2002; Boyle et al., 2012; DeSimone, McMahon, and Rosen,
2014). Second, we confine our analysis to variations within sub-basins—geographical areas of
interconnected groundwater with shared characteristics influencing nitrate movement—and
include additional controls for site-specific variables, such as soil composition, groundwater
depth, and proximity to rivers, previously shown to be important factors in determining the
fate of nitrates (Ransom et al., 2017). Third, we harness comprehensive land use data sets,
such as the Cropland Data Layer, which have been underutilized in existing literature. The

spatially detailed land use data allows for precise groupings that reveal the relative impor-



tance of different land uses around wells, information that may be missed when relying on
more coarsely aggregated data (Lichtenberg and Shapiro, 1997; Ransom et al., 2017). Lastly,
given that the primary sources of variation in nitrate concentrations and land use allocations
occur across space, our cross-sectional model offers the advantage of leveraging substantial
variation for identification, in a context where variables evolve only gradually over time.
Because aquifer contamination occurs primarily through the leaching of contaminants de-
posited near the land surface, and we control for a variety of biophysical factors affecting
their flow towards the water table, the scope for omitted variable bias remains limited in our
setting.

Our paper contributes to the understanding of critical questions surrounding the fate of
nutrient emissions from land management (Galloway et al., 2008). We take a decadal view of
the association between land use patterns and the concentration of nitrates in groundwater
wells, where contamination can potentially cause the most harm. Our empirical methodol-
ogy relies on observational data, distinguishing it from approaches that integrate estimates
derived from simulation models. Some recent observational studies have linked historical
water quality data to crop and livestock land use decisions (Paudel and Crago, 2021; Raff
and Meyer, 2022; Metaxoglou and Smith, 2025) and conservation efforts (Liu, Wang, and
Zhang, 2023; Karwowski and Skidmore, 2024). These empirical studies, however, focus on
surface water quality impacts, and analogous evidence for groundwater quality is needed to
inform land use policy, given the distinct uses and valuations of groundwater. Regarding the
primary explanatory variables, we adopt an innovative approach for categorizing land uses
according to their propensity to emit nitrogen below the root zone (Wu et al., 2005).

The remainder of the paper is structured as follows. In the next section, we present our
main econometric model. Next, we explain the construction of our data set and provide sum-
mary statistics. Subsequently, we present our main findings, supported by several sensitivity
checks. We then use our empirical estimates to assess the costs and benefits of replacing

high-nitrogen crops by low-nitrogen crops around sample wells. The last section concludes.



2 Empirical Methods

Our research design leverages cross-sectional variation in nitrate concentrations and land use
surrounding well ¢ in sub-basin b by regressing mean nitrate concentrations in recent years
on mean land use shares measured in a prior period. Nitrate concentrations and land use
shares are calculated as five-year averages and measured twelve years apart to account for

the diffusion process. Our preferred regression equation takes the following form:

In Nile = LibTolﬁ + lioib -+ Xz’b/'Y + )\b + « In NibTo -+ EibTy (1)

where Tj represents the period 2007-2011, 77 the period 2019-2023, N, and Ny, are
mean nitrate concentrations during periods Ty and T}, respectively, and In is the natural
logarithm. The column vector Lz, denotes land use shares and Cj, denotes local dairy
cattle population. Note that this latter covariate is not indexed by a time period as we
only observe one year of dairy cattle population data. We discuss this issue further in
Section 3. The vector X;;, includes control variables for soil characteristics, the share of land
with subsurface drains, distance to the nearest river, depth to groundwater, precipitation,
and surface water deliveries. The fixed effects A, control non parametrically for unobserved
characteristics of the aquifer and deep soils common to wells located within sub-basin b. In
some regressions, we include lagged nitrate concentrations to reflect the fact that nitrates
may remain in groundwater for extended periods of time, so initial conditions matter.

We estimate Equation (1) using Ordinary Least Squares. The vector 3 captures land use
impacts, with each element 5* representing an (eﬂk —1) x 100 percent change in groundwater
nitrate concentrations associated with a one unit increase in the share of land dedicated to
activity k. If we measure the land use share using an index from zero to one, then the effect
is that of a change from a zero to one share. When discussing our results, we consider instead
the effect of a 10 percentage point increase in the share, which is obtained by computing

(eﬁkxo‘1 — 1) x 100. Since land use shares sum up to one, we omit undeveloped land (i.e.,



natural lands such as forests, wetlands, and deserts), so the effect of an increase in land use
k is to be understood as arising from replacing undeveloped land by activity k. In Section
4.3, we discuss the implications of disaggregating the undeveloped land category and using
forested land as the omitted land use. The coefficient k captures the relative impact of an
additional one thousand dairy cattle located within a specific distance of well 1.

In our main cross-sectional specifications, temporal averages in the recent and past pe-
riods are calculated over a five-year window, and we allow for a 12-year lag between the
midpoints of recent and past periods.® This lag, as well as the averaging of land shares
over multiple years, are meant to capture the fact that nutrient leaching into groundwater
is generally a gradual, multi-year process. For deep wells (>70 ft), in particular, hydrology
models predict that leaching may take a decade or longer (Boyle et al., 2012; Lockhart, King,
and Harter, 2013). Given that the average depth to groundwater across our sample of wells
is 31 meters (99 ft), it is unlikely that land use changes could have a direct contemporaneous
(or even short-run) effect on groundwater concentrations (Boyle et al., 2012).7

The vector X;;, includes, among others, controls for depth to groundwater, precipitation,
and surface water deliveries. Because these variables typically vary over time and their values
plausibly affect the ultimate nitrate concentrations cumulatively, we define the depth to
groundwater as the mean depth to groundwater over the length of our panel (2007 through
2023), precipitation as the cumulative precipitation from 2007 through 2023, and surface
water deliveries as the sum of acre-feet of surface water delivered per acre of agricultural
land in the water region in which well i is located from 2007 through 2021.%

Identification of the impacts of land use on nitrate concentrations requires adequate

controls for biophysical and well characteristics, as these may also partially affect land uses.

61deally, we would observe land uses around wells over multiple decades, which would allow us to better
measure historic land use around wells. However, this 12-year lag is the longest afforded by the remotely
sensed Cropland Data Layer.

"For completeness, we estimate contemporaneous regressions of mean 2019-2023 nitrate concentrations
on mean 2019-2023 land use shares. See Appendix Table C.2 and the discussion in Section 4.3.

8Water regions are Detailed Analysis Unit by County regions as defined by California’s Department of
Water Resources (California Department of Water Resources, 2019).



Our long list of controls includes variables highlighted in previous literature as meaningfully
impacting nitrate concentrations in groundwater (Ransom et al., 2017). However, data
limitations mean that we cannot control for every characteristic of the aquifers, wells, and
deep soils; thus, we adopt the common econometric approach of controlling for unobserved
potential confounders using fixed effects, here at the sub-basin level.”

The California Department of Water Resources defines 515 sub-basins that underlie ap-
proximately 42% of the state’s land area, 82% of its population, and 97% of its agricultural
land (California Department of Water Resources, 2019, 2021). The average sub-basin under-
lays 480 square kilometers of land area. The sub-basin delineation of California groundwater
systems divides the large San Joaquin and Sacramento Valley basins—both within the Cen-
tral Valley, the heartland of California agriculture and the region where about half of the
wells in our sample reside—into 35 regions based on geological features that slow, but might
not entirely prevent, water from mixing over time.! The California Department of Water
Resources subdivides 28 smaller basins into 86 sub-basins. The remainder of the state’s
basins are not divided into sub-basins and are treated as their own sub-basin in our analysis.

Sub-basin fixed effects capture local unobserved biophysical characteristics that might
vary greatly throughout the large Central Valley basins, such as reduction/oxidation
conditions—the chemical environment that determines the rate at which nitrates convert
to other nitrogen compounds—and groundwater age (Ransom et al., 2017). To the extent
that these characteristics correlate with local land use patterns, using basin instead of sub-
basin fixed effects would cause bias. The inclusion of sub-basin fixed effects is not costless,
however. First, it removes a source of potentially useful cross-sectional variation, namely that

present within basins. Second, our data include 29 sub-basins with only one well, so using

9Cross-sectional regressions with spatial data are particularly susceptible to omitted variable bias as
geographic proximity may affect the outcome variable through a variety of channels that are difficult to
control for. A common practice in such contexts is to include fixed effects that capture spatial proximity.
Many studies use administrative delineations such as zip codes, counties, agricultural districts, or state
boundaries (Schlenker, Hanemann, and Fisher, 2006; Ortiz-Bobea, 2020; Gammans, Mérel, and Ortiz-Bobea,
2024). In the present case, where the outcome of interest, groundwater contamination, likely varies according
to hydrology, we find it appropriate to use sub-basin fixed effects.

10Tn contrast, basins map hydrologically isolated groundwater bodies.
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sub-basin fixed effects reduces the effective sample size. Fortunately, these 29 observations

represent a small share of the 6,016 wells and 230 sub-basins present in the sample.

3 Data

We use publicly available data from several government and academic institutions. In what
follows, we describe our data sources, explain our approach to data cleaning and aggregation,

and provide detailed descriptions and summary statistics of our variables.

3.1 Data Set Construction
3.1.1 Nitrate Concentrations

We obtain data on nitrate concentrations from the State Water Resources Control Board’s
Groundwater Ambient Monitoring and Assessment (GAMA) Program, readily available from
their online portal (California Water Boards, 2024a). GAMA staff compiled these data from
multiple government, research, and local sources that sample from private, public, irrigation,
and monitoring wells throughout California. We exclude monitoring wells from our sample as
many are close to locations of unauthorized releases of pollutants into the environment, such
as leaking underground storage tanks on industrial sites. In addition, monitoring wells have
a different set of design, construction, and management standards compared to irrigation
and drinking water wells, leading to water samples not representative of water extracted for
human use.!! Public drinking water wells make up the majority of our final data, comprising
above 99% of the wells in our sample.

The groundwater quality data include measurements of nitrate-nitrogen and nitrite-
nitrogen. Nitrate-nitrogen refers to the weight of the nitrogen atom in the nitrate molecule.'?

For brevity, we refer to nitrate-nitrogen as nitrates. Nitrite, the other nitrogen molecule re-

HThese well standards are described on the California Department of Water Resources (2024) website.
12Laboratories typically measure and report nitrate-nitrogen concentrations in water samples, and by
convention, scholarly works focus on nitrate-nitrogen. We follow this convention in this paper.
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ported in the data, is an unstable molecule that readily oxidizes to nitrate and occurs in much
smaller quantities in groundwater (Burkart and Stoner, 2008). For drinking water quality
purposes, nitrate plus nitrite concentrations represent nitrate concentrations (California Wa-
ter Boards, Central Coast Regional Water Quality Control Board, 2013). Therefore, we sum
nitrate-nitrogen and nitrite-nitrogen concentrations and report this measure as nitrate.

The GAMA data includes geographic coordinates, sample collection date, and the lab-
oratory minimum nitrogen concentration detection limit. Minimum detection limits range
from 0.02 mg/L to 1 mg/L, depending on the laboratory. To deal with censored observations,
we follow Keiser and Shapiro (2019a) and let concentrations below the minimum detection
threshold equal the detection limit.'?

Lastly, the month and frequency of water sampling vary over wells. Thus, we calculate
the annual average nitrate concentration within the calendar year. This decision is supported
by the fact that we find no evidence of seasonality in nitrate concentrations in the data. This

lack of seasonal variation is not surprising given that California groundwater experiences low

annual recharge and because of groundwater mixing (Lockhart, King, and Harter, 2013).

3.1.2 Land Use

We use land use data from the Cropland Data Layer (CDL), a satellite data product of
the U.S. Department of Agriculture National Agricultural Statistics Service available online.
The CDL is an annual raster image of the U.S., with each cell classified into a land use or
crop type based on remotely sensed data and verified by U.S. Department of Agriculture
personnel by ground truth sampling to ensure accuracy. The first California CDL image
was taken in 2007, with cells measuring 56 square meters. Subsequent images have cells
measuring 30 square meters.

We focus on land use within a 500-meter radius of a well. Using a circular buffer zone

is a standard approach in the existing literature and a good approximation to the land that

13 As a sensitivity check, we let the censored concentration equal half the detection limit. See Section 4.3.
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contributes to groundwater recharge to a well (Johnson and Belitz, 2009). Kolpin (1997) used
a range of buffers from 200 meters to 2 kilometers and showed that 500 meters provide the
best correlation between land use and nitrate concentrations, while Koterba (1998) reviewed
six articles focusing on nitrate and pesticide pollution and recommended a 500-meter buffer
for empirical studies. More recently, Johnson and Belitz (2009) show that a 500-meter buffer
is a robust proxy for the well supply area in the Central Valley of California.'* We use well
location coordinates from the groundwater quality data and extract land use data from the
CDL using geospatial methods in R.

There are about 160 land use and crop types within 500 meters of our sample of wells. To
create a parsimonious regression model, we aggregate crops based on the Nitrogen Hazard
Index (NHI), a protocol that uses expert opinion and data to assign a value of 1 through 4
to crops based on five natural and management factors that contribute to nitrate leaching
propensity, namely: 1) rooting depth, 2) ratio of nitrogen in the crop tops to recommended
nitrogen application, 3) fraction of crop nitrogen removed from the field with the marketed
product, 4) magnitude of the peak nitrogen uptake rate, and 5) whether the crop is harvested
at a time when nitrogen uptake rate is high (Wu et al., 2005). The NHI, therefore, provides a
richer metric than a crop’s nitrogen demand alone, because it incorporates agronomic factors
associated with how crops absorb nitrogen in the soil.'> To date, researchers have used the
NHI to aggregate crops in a handful of research and extension publications (e.g., Dzurella
et al. (2015) and Beaudette and O’Geen (2009)). Furthermore, the NHI has been verified
by the U.S. Geological Survey to capture realized leaching patterns across crops in case
studies across California (Wu et al., 2005). A list of the crops and non-agricultural land uses
found within 500 meters of sample wells and their assigned category is provided in Appendix
Table A.1. Crops with an NHI equal to 1 are assigned to the “Low-NHI crops” group, while

crops with an NHI equal to 2, 3, or 4 are assigned to the “High-NHI crops” group. This

141n Section 4.3, we show results based on an alternative one-kilometer buffer.

15The primary downside of using this metric is that we do not directly observe nitrogen amounts, as the
NHI is developed based on recommended rates. Nevertheless, in the absence of data on field-level fertilizer
rates, it provides the best measure of crop-specific nitrate leaching potential available.
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categorization results in crop groups with average land shares of similar magnitude, as crops
with an NHI of 3 or 4 tend to occupy a very small area in our sample. For supplemental

analyses, we also divide crops into three groups (NHI-1, NHI-2, and NHI-3/NHI-4).

3.1.3 Soils

Data on soil characteristics come from the U.S. Department of Agriculture (2014) as a raster
file, with each pixel representing an area of 90 square meters. The soil data represent an
area and depth weighted average of soil attributes within the raster cell measured from the
land surface to a depth of about 1.5 meters.'® Sand, silt, and clay percentages characterize
the soil texture, and the percentages sum up to one. Organic matter, also called humus,
refers to the percentage of decomposed plant and animal residues in the soil’s dry weight.
Organic matter, sand, silt, and clay constitute the major components of soil (Hillel, 2008).
Similar to the procedure for land use data, we extract soil data within 500 meters of
the well and then calculate average sand, silt, clay, and organic matter percentages using
weighted averages across pixels, where weights are based on the share of pixel area contained

within the buffer.

3.1.4 Tile Drains

Subsurface tile drainage is often installed in poorly drained soil to divert water away from
fields and into distant waterways. Therefore, the presence of tile drainage may meaningfully
affect nitrate leaching into groundwater. We use a raster data set of subsurface tile drainage
in the U.S. from Valayamkunnath et al. (2020) with cells measuring 30 square meters. This
data set contains a variable indicating the presence of subsurface drains within a raster cell.
Like land use and soil data, we extract drainage raster cells within 500 meters of the well

and then calculate the share of land with drains using weighted averages.

6Wieczorek (2014) offers a useful overview of the soil data.
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3.1.5 Precipitation

Precipitation data come from Oregon State University PRISM Climate Group (2024). The
PRISM data set provides a model-based estimate of precipitation for the U.S. at a resolution
of 4 km. For each sample well, we extract cumulative precipitation amounts from 2007 to
2023 from the grid cell containing the well. In supplemental analysis, we also aggregate

precipitation by season to investigate how precipitation timing affects nitrate leaching.

3.1.6 Rivers

We use the Major Rivers and Creeks maps from the U.S. Geological Survey’s National
Hydrology data set available online (California Department of Water Resources, 2023). We

compute the distance from a well to the nearest river using geospatial techniques in R.

3.1.7 Surface Water Deliveries

California agriculture heavily relies on irrigation via surface water storage and distribution
networks, since California’s agricultural regions receive very little rainfall during the growing
season. Surface water irrigation allotments, therefore, may affect both land use patterns and
nitrate leaching, making it an important control variable. We use a data set of surface
water deliveries compiled by Hagerty (2022) and available online. The dataset contains
reported surface water deliveries to agricultural users in California regions from 1993 to
2021 and acres of agricultural land in each region. The regions, called Detailed Analysis
Unit by County (DAUCO), divide California’s hydrological regions and planning areas into
smaller geographic areas for agricultural land use and water balance analysis by California’s

Department of Water Resources.

3.1.8 Dairy Cattle Inventories

As part of the Waste Discharge Reports and Requirements Order, livestock enterprises are

required to submit a Report of Waste Discharge that includes livestock inventories, and the
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California State Water Resources Control Board publishes an online database that includes
the geographic coordinates of the facility and the livestock populations (California State
Water Resources Control Board, 2022). The inventories are self-reported and periodically
updated. Therefore, the available data represent the latest livestock inventories reported
by farmers. Unfortunately, it is not possible to recover historical inventories throughout
the sample period. We focus on dairy cattle because dairies are responsible for most of
the nitrogen-rich manure produced by livestock species and most dairies are located in the

Central Valley where a large share of our sample wells are located.

3.2 Data Aggregation

In our preferred model specification, we group annual well-level observations of nitrate con-
centrations and land use shares into five-year windows at the endpoints of the sample period
and calculate the mean of the respective variables. The following considerations inform our
decision to construct averages over time. First, many wells have nitrate measurements in
some years but not in others. Therefore, using a single year for determining nitrate concen-
trations would severely limit the number of observations that enter the regression, especially
when we include a lagged dependent variable to capture initial conditions. Averaging over
the available annual observations within a five-year window results in a larger sample size.
In doing so, we implicitly assume that nitrate concentration data are missing at random.
Second, we find that nitrate concentrations and land use shares evolve gradually over time;
therefore, we do not believe that we lose meaningful information by averaging over a five-
year window. Third, nitrate concentrations at a point in time are the result of cumulative
nutrient leaching from past years, excluding perhaps the most recent years, as it takes time
for nutrients to reach the groundwater table. Using a five-year average of land use over prior

years partially captures the cumulative nature of the leaching process.
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3.3 Data Summary

Figure 2 shows the relative size, shape, and location of California’s 515 groundwater sub-
basins and the spatial distribution of our effective sample of 6,016 wells across 230 sub-basins
scattered across the state. Most wells are located in the Central Valley and coastal and
southern regions.!” The figure shows that ten large Central Valley sub-basins contain 90—
455 sample wells and a further thirteen sub-basins contain more than 30 wells. Consequently,
about 50% of observations lie within the 35 Central Valley sub-basins. In comparison, basins
in the Northeast and along the North Coast are smaller and have fewer observations. On
average, the observed sub-basins outside the Central Valley contain 17 wells. We do not
observe nitrate concentrations in many of the basins in southeast California, a mostly desert
and mountainous region with little agriculture and far from major population centers. White
regions in Figure 2 represent non-basin regions, for instance the Sierra Nevada mountain
range east of the Central Valley.

Table 1 provides variable descriptions and Table 2 reports summary statistics for the
sample of 6,016 wells used in the analysis. The sample includes observations from 5,998
municipal wells, 3 domestic wells, 5 irrigation wells, and 10 other water supply wells. The
summary statistics reveal that mean nitrate concentrations increased from 2.7 mg/L in 2007—
2011 to 2.9 mg/L in 20192023, an increase of 7.4% that points to worsening water quality.
This positive trend is consistent with earlier studies of nitrate concentrations in public well
water supply (Burow, Shelton, and Dubrovsky, 2008; Pennino, Compton, and Leibowitz,
2017). Scientists have linked nitrate concentrations above 2 mg/L to contamination from
anthropogenic sources such as agriculture and urban development (Mueller and Helsel, 1996;
Harter, 2009; Lockhart, King, and Harter, 2013). Moreover, epidemiological studies reveal
an increased risk of thyroid (Ward et al., 2010) and ovarian (Inoue-Choi et al., 2015) cancer

from drinking water containing 2-3 mg of nitrates per liter relative to water with less than

1"The Central Valley is a 700-kilometer-long region of flat land running north to south along the spine of
California and is the top agricultural area in the state.
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Number of wells
455

270

90

Figure 2: Number of wells observed in each sub-basin

Note: The figure maps the 515 sub-basins and shows the distribution of the 6,016 wells in our sample.
Grey regions indicate sub-basins with no well data, and white regions represent non-basin areas.
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0.5 mg/L. Out of our 6,016 sample wells, 45.2% have 2007—2011 nitrate concentrations above
2 mg/L, and 2.7% have baseline concentrations above the federal MCL of 10 mg/L. These
shares rise to 45.4% and 3.6%, respectively, for the period 2019-2023.

Table 2 reveals that low- and high-NHI crops account for 5% and 9% of total land
use, respectively. Fallow agricultural land has the smallest share (3%) among the land use
categories defined in our analysis. Pasture, which includes grazing grasslands and pasture
harvested for hay, makes up the largest share of agricultural land surrounding wells (17%).

Urban developments represent the largest share of land use, with low- and high-intensity
developments occupying 30% and 23% of land around wells, respectively. Low-intensity
developments are areas with less than 50% of the land covered in impervious surfaces like
concrete and asphalt. Examples include urban open spaces like parks and golf courses
and areas with a mixture of constructed materials and vegetation, like housing units with
gardens. In high-intensity developments, impervious surfaces account for more than 50% of
the land cover, and examples include apartment, commercial, and industrial complexes. The
dominance of urban land use in our sample is not surprising, considering that many of the
wells are used to extract water for urban uses, particularly municipal wells.

Undeveloped land comprises, on average, 13% of total land use, and encompasses forests,
herbaceous scrubland, and barren regions with little vegetation, such as rocky mountains and
deserts. Undeveloped land serves as the base land use category in our regressions, reflecting
land that remains unaffected by any form of agricultural, urban, or industrial activity.

Table 2 reveals that the sample has, on average, 10 dairy cattle within 1 km of wells and
380 cattle within 1-5 km. We find that 73% of wells with a dairy within 1 km lie inside
the Central Valley, with most in Stanislaus, Tulare, and Kings counties. Similarly, Central
Valley wells account for 81% of wells with a dairy within 1-5 km, with wells in Stanislaus
and Tulare accounting for the largest share.!® Outside of the Central Valley, we observe wells

with a dairy located less than 5 km away in the North Coast region, particularly Sonoma and

8Figure A.1 shows a map of California counties.
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Table 1: Variable Descriptions

Variable

Description

Nitrate concentration
Low-NHI crops
High-NHI crops

Fallow

Pasture

Low-intensity  develop-
ment

High-intensity develop-
ment

Undeveloped land
Cattle within 1km

Cattle within 1-5km

Surface water deliveries

Precipitation

Depth to groundwater
Distance to river
Sand, silt & clay

Organic matter

Drainage

Milligrams of nitrate-nitrogen plus nitrite-nitrogen per liter
of untreated water

Share of land within buffer zone used to grow crops with a
Nitrogen Hazard Index 1

Share of land within buffer zone used to grow crops with a
Nitrogen Hazard Index 2, 3 and 4

Share of cropland within buffer zone fallowed or idle

Share of land within buffer zone used to grow pasture or
grassland

Share of land within buffer zone with a mixture of vegetation,
such as gardens and parks, and constructed materials where
impervious surfaces account for less than 50% of the land
cover, typically single-family housing

Share of land within buffer zone where impervious surfaces
account for more than 50% of land cover such as apartment,
commercial, and industrial complexes

Share of land within buffer zone used for forest, wetland, and
other natural land cover

Inventory of lactating and dry cows and heifers on dairies
located within 1 kilometer of the well (thousand)

Inventory of lactating and dry cows and heifers on dairies
located between 1 and 5 kilometers of the well (thousand)

Cumulative acre-feet of surface water delivered to a DAUCO
region per acre of agricultural land in 2007-2021 in one hun-
dred feet increments

Cumulative precipitation in 2007-2023 in ten meter incre-
ments

Distance from land surface to groundwater in ten meter in-
crements

Distance from well to nearest river in ten kilometer incre-
ments

Mean share of soil textural fraction composed of sand, silt
and clay, respectively, within buffer zone

Mean share of organic matter in soil within buffer zone

Share of land within buffer zone with subsurface drains
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Table 2: Summary Statistics

Mean Std. Dev. Min. Max.

Nitrate concentration in 2019-2023  2.90 3.61 0.004 67.28
Nitrate concentration in 2007-2011  2.70 3.06 0.02 56.44
Low-NHI crops 0.05 0.11 0 0.90
High-NHI crops 0.09 0.15 0 0.94
Fallow 0.03 0.06 0 0.69
Pasture 0.17 0.20 0 0.96
Low-intensity development 0.30 0.19 0 0.95
High-intensity development 0.23 0.25 0 0.99
Undeveloped land 0.13 0.21 0 1

Cattle within 1km 0.01 0.17 0 8.69
Cattle within 1-5km 0.38 1.67 0 23.03
Surface water deliveries 0.06 0.85 0 20.21
Precipitation 0.65 0.35 0.10 2.50
Depth to groundwater 3.10 2.87 0.06 2097
Distance to river 0.15 0.19 0 1.92
Sand 0.55 0.20 0.04 0.98
Silt 0.26 0.11 0.01 0.70
Clay 0.19 0.11 0.01 0.65
Organic matter 0.01 0.02 0.00005  0.37
Drainage 0.01 0.05 0 0.82

Note: Sample size is 6,016 wells. Low-NHI crops, high-NHI crops, pasture, fallow,
developed, and undeveloped land represent mean land use shares from 2007 through
2011.

Marin counties, and a handful in the Southern California and Central Coast regions, both
minor dairy-producing areas. The predominance of Central Valley wells in the set of wells
with nearby dairies is unsurprising considering that approximately 90% of milk cows reside
in Central Valley dairies, with Tulare county containing 28% of the state herd, followed by

Merced and Stanislaus (U.S. Department of Agriculture, 2022).

4 Results and Discussion

Table 3 shows estimates from a regression of mean 2019-2023 nitrate concentrations on
mean 2007-2011 land use shares within 500 meters of the well and various controls, based

on Equation (1). The table contains six columns of results. Columns (1) and (2) display the
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results of regressions without initial nitrate concentrations, while the regressions in columns
(3) and (4) control for mean 2007-2011 nitrate concentrations. Therefore, the land use
coefficients in columns (3) and (4) represent incremental impacts on nitrates approximately
twelve years later. Columns (2) and (4) show results of regressions that include sub-basin
fixed effects. Columns (5) and (6) are equivalent to columns (2) and (4), respectively, except
that the high-NHI crop category is split into NHI-2 crops and NHI-3/NHI-4 crops. In all
regressions, we estimate coefficients for land use relative to undeveloped land, and for sand
and silt relative to clay. We cluster standard errors by sub-basin.

Model fit comparisons indicate that sub-basin fixed effects explain a large share of the
variation in nitrate concentrations across wells. In models excluding initial concentrations,
the R-squared rises from 0.14 to 0.32 upon the inclusion of sub-basin fixed effects. The model
fit improves markedly when including initial concentrations, with the R-squared increasing to
0.77 in column (3) and further to 0.79 when sub-basin fixed effects are added in column (4)."

Splitting high-NHI crops into two sub-categories only improves the model fit marginally.

4.1 Land Use and Cattle Effects

We begin the discussion by focusing on estimates of regressions without initial nitrate concen-
trations reported in columns (1) and (2) of Table 3. Estimates reveal positive and significant
relationships between nitrate concentrations and the share of land used for agriculture and
urban development relative to undeveloped land. The inclusion of sub-basin fixed effects
leads to a marked decrease in the magnitude of land use coefficients and a reduction in sig-
nificance for cattle population within 1 km. The coefficients on fallow and cattle population
within 1-5 km change signs, but they are not statistically significant in columns (1) or (2).

The coefficients on high-NHI crops are the largest point estimates among the land use
shares in specifications without initial nitrates, equaling 1.8 without sub-basin fixed effects

(column (1)) and 1.1 when controlling for sub-basin fixed effects (column (2)). The coeffi-

191n fact, initial nitrates alone explain 76% of the variation in later nitrate concentrations.
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Table 3: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on Mean

2019-2023 Nitrate Concentrations

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) 3) (4) (5) (6)
Low-NHI crops 0.80*** 0.61** -0.23** -0.01
(0.26)  (0.31)  (0.10)  (0.13) o
High-NHI crops 1.8% 1.5 0.21 0.14 - o
(0.34) (0.31) (0.14) (0.14)
NHI-1 crops 0.61% -0.01
o o o o (0.31)  (0.13)
NHI-2 crops 1.0%** 0.09
o o o o (0.34)  (0.16)
NHI-3/NHI-4 crops 2.7 0.85*
o o o o (1.2) (0.47)
Fallow -0.38 0.88 0.02 0.48* 0.89 0.48*
(0.60) (0.74) (0.16) (0.26) (0.74) (0.26)
Pasture 1.3% 0.73*** 0.11 0.07 0.74%** 0.07
(0.17) (0.25) (0.07) (0.10) (0.25) (0.10)
Low-intensity development 1.4%* 0.96*** 0.11 0.10 0.97*** 0.10
(0.19) (0.16) (0.07) (0.07) (0.16) (0.07)
High-intensity development 1.5%** 1.0%** 0.08 0.13 1.0%** 0.13
(0.23) (0.22) (0.07) (0.09) (0.22) (0.09)
Cattle within 1km 0.18** 0.15% 0.02 0.009 0.15% 0.01
(0.07) (0.08) (0.07) (0.07) (0.08) (0.07)
Cattle within 1-bkm 0.01 -0.01 0.004 0.003 -0.008 0.004
(0.02) (0.02) (0.009) (0.01) (0.02) (0.01)
Surface water deliveries 0.05* 0.05***  -0.001  -0.0003 0.05*** -0.0003
(0.03) (0.003)  (0.003) (0.001) (0.003) (0.001)
Precipitation -0.57%** -0.11 -0.19%** 0.03 -0.11 0.03
(0.14) (0.38) (0.05) (0.12) (0.38) (0.12)
Depth to groundwater 0.006 0.002 0.002 0.007 0.001 0.007
(0.01) (0.02) (0.004)  (0.005) (0.02) (0.005)
Drainage -1.6** -0.85 -0.33* -0.30** -0.89 -0.33**
(0.35) (0.58) (0.18) (0.13) (0.62) (0.13)
Sand 0.35 -0.27 -0.16 -0.38** -0.25 -0.38**
(0.33) (0.31) (0.16) (0.17) (0.31) (0.17)
Silt -0.17 -0.68 -0.45* -0.74** -0.71 -0.76**
(0.55) (0.56) (0.27) (0.30) (0.56) (0.30)
Organic matter =51 -4.2** -0.43 -0.42 -4.2%* -0.40
(1.7) (1.9) (0.62) (0.66) (1.9) (0.65)
Distance to river 0.24 0.51 0.16** 0.16* 0.51 0.16*
(0.28) (0.34) (0.07) (0.09) (0.34) (0.09)
Initial nitrate concentration 1.0%** 0.98*** 0.98***
o N (0.02)  (0.02) (0.02)
Sub-basin FE No Yes No Yes Yes Yes
Observations 6,016 6,016 6,016 6,016 6,016 6,016
R? 0.13855 0.32333 0.77203 0.79430 0.32392 0.79442

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Initial nitrate
concentration equals log nitrate concentration 2007—2011. Standard errors are clustered by sub-basin; *p <

0.10, **p < 0.05, ***p < 0.01.
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cients from columns (1) and (2) imply that a 10 percentage point increase in the share of
land used for high-NHI crops is associated with a 19.7% and 11.6% increase in nitrate con-
centrations, respectively, relative to undeveloped land. For example, using the sample means
reported in Table 2 and the coefficient from high-NHI crops from column (2), increasing the
mean share of land dedicated to high-NHI crops from 9% to 19% would increase nitrate
concentrations from 2.9 mg/L to 3.2 mg/L, all else constant. Column (5) further differenti-
ates the contributions of NHI-2 crops and NHI-3/NHI-4 crops. Crops in the NHI-3/NHI-4
category comprise less than 1% of land uses around wells, but they indeed contribute the
highest marginal effect on groundwater nitrates, as expected.

The coefficients on low-NHI crops from columns (1) and (2) imply that a 10 percentage
point increase in the share of land used for low-NHI crops is associated with nitrate concen-
trations 8.3% and 6.3% higher, respectively, than undeveloped land. Results of a Wald test
for equality of the coefficients reveal that without sub-basin fixed effects (in column (1)),
the coefficient on high-NHI crops is statistically larger than that on low-NHI crops at the
5% significance level, while the two coefficients are not statistically different in the regres-
sion with fixed effects (in column (2)). The finding that the coefficients on low-NHI crops
are smaller than the coefficients on high-NHI crops is consistent with the crop categories’
propensity for leaching nitrates below the root zone (Wu et al., 2005).2°

The coefficient on pasture in column (1) equals 1.3, meaning that a 10 percentage point
increase in the share of pasture is linked with a 13.9% rise in nitrate concentrations relative
to undeveloped land. From column (2), a 10% increase in the share of pasture is linked with
a 7.6% rise in nitrates. The large coefficients on pasture may be due to the inclusion of
grass harvested for hay and silage in the CDL’s pasture and grasslands category. Growers

typically fertilize harvested grasslands with synthetic fertilizer and manure if the field is

20This finding also aligns with past hydrology literature (Ransom et al., 2018), which estimates that
emissions of nitrate-nitrogen into California Central Valley groundwater from rice and alfalfa fields (low-NHI
crops) total about 4 kg of nitrogen per hectare per year (kg N/ha/yr), while emissions from high-NHI crops
like citrus (resp. vegetables and berries, resp. tree nuts) equal 65 kg N/ha/yr (resp. 49 kg N/ha/yr, resp.
25 kg N/ha/yr).
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located close to a dairy (Ransom et al., 2018). Consequently, excess nitrogen compounds
can leach below the shallow root zone and into groundwater if they surpass the grass crop’s
nutrient requirements. Indeed, Ransom et al. (2018) find that nitrate emissions from manure-
fertilized forage crops in the Central Valley equal 46 kg N/ha/yr, roughly equivalent to
emissions from some high-NHI crops like vegetables and berries.

Increasing the cattle population within 1 km of a well by 1,000, which falls short of the
average dairy herd size in California, is associated with a 16-20% increase in nitrate con-
centrations. As dairy operations became increasingly concentrated in California, especially
through the 1990s, manure production in Central Valley counties has exceeded the acreage
available for application (Kellogg et al., 2000). Thus, dairy managers face a choice between
applying excess nutrients to suitable crops or costly processing, such as drying manure, to

2L 'We find no meaningful effect of dairies located further (1-5

transport it to other areas.
km) from wells. The evidence from prior literature on the extent to which cattle popula-
tions contribute to nitrate contamination of groundwater is inconclusive. On the one hand,
Ransom et al. (2018) find that nitrate emissions from manure-fertilized forage are twice as
large as emissions from equivalent fields treated with synthetic fertilizer, and Harter et al.
(2002) show that cattle housing and manure lagoons act as point sources of nitrates. In
Wisconsin, Meyer and Raff (2025) find that an additional dairy confined animal feeding
operation within 1 mile of a well increases nitrate concentrations by 6%, but these effects
are limited to privately owned wells. On the other hand, using a sample of Central Valley
wells, Lockhart, King, and Harter (2013) find no clear correlation between the presence of a
dairy farm within 2.4 km of wells and nitrate concentrations. However, Lockhart, King, and
Harter (2013) focus on correlations and do not control for biophysical features like depth to

water or soils. Using regression models that include hydrological characteristics and land

uses at the county level in Maryland, Lichtenberg and Shapiro (1997) find no statistically

21Since 2013, the Irrigated Lands Regulatory Program (ILRP) has required dairies to submit an annual
nutrient management plan to the Central Valley Water Control Board. The ILRP technical standards for
nutrient management stipulate that dairies should not apply nitrogen in excess of 1.4 times the nitrogen
removed from the field in the harvested portion of the crop.
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significant association between dairy cattle and nitrate concentrations. However, typical
dairy production in Maryland in the early 1990s involved small, pasture-based herds rather
than the concentrated feeding operations prevalent in California (Somerville et al., 2020).

The positive coefficient on fallow in column (2) might be explained by the fact that
without a crop to absorb residual nutrients left from previous crop years, nitrates leach
deeper into the soil and below the root zone. Results of field experiments by Bauder, Sinclair,
and Lund (1993), Campbell et al. (2006), and John et al. (2017) reveal positive associations
between fallow cropland and nitrate emissions into groundwater. However, the coefficient on
fallow is not statistically significant.

Urban developments are positively and significantly associated with nitrate concentra-
tions in columns (1), (2), and (5), although the differences in the estimated effect between
the two intensities considered are modest. The coefficients from column (2) imply that a 10
percentage point increase in low-intensity (resp., high-intensity) development is associated
with a 10.1% (resp., 10.5%) increase in nitrate concentrations. Some key nitrate sources in
urban landscapes include septic and sewage systems, gardens, and parklands (Lichtenberg
and Shapiro, 1997; Pennino, Compton, and Leibowitz, 2017; Ransom et al., 2018).

Nitrate contamination of groundwater through leaching is a cumulative process, charac-
terized by potentially long time lags between the absorption of nutrients in the topsoil and
their reaching of the water table as well as the persistence of contaminants in groundwater
over time. To understand the extent to which land use may affect nitrate concentrations
over a twelve-year period, we include initial concentrations in our analysis and present the
regression estimates in columns (3), (4), and (6) of Table 3. In general, these specifications
show that the land use coefficients are an order of magnitude smaller compared to columns
(1), (2), and (5) and generally insignificant, indicating that land use has little relationship
to nitrate concentrations twelve years later once initial concentrations are included. Point
estimates for low-NHI crops, fallow, and NHI-3/NHI-4 crops are exceptions. In column (3),

the coefficient on low-NHI crops is -0.23; however, the estimate decreases in magnitude and
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loses significance when controlling for sub-basin fixed effects. Columns (4) and (6) reveal
a relatively large coefficient on fallow (0.48), but this estimate is only significant at the
10% level. Results of a Wald test reveal that in column (3), the coefficient on high-NHI
crops is significantly larger than the coefficient on low-NHI crops at the 5% level, while the

coefficients on low- and high-NHI crops in column (4) are not statistically different.

4.2 Initial Nitrates

The coefficient on initial nitrate concentrations in column (3) of Table 3 is estimated to be
one, indicating that a 1% increase in mean 2007-2011 nitrate concentrations is associated
with a 1% increase in 2019-2023 concentrations, conditional on land use and biophysical
factors. Introducing sub-basin fixed effects in column (4), the coefficient slightly decreases
to 0.98, with a 95% confidence interval that includes one, and similarly for column (6).
Another striking feature of the regressions reported in columns (3), (4), and (6) of Table 3
is their relatively large R-squared.

Given that our model involves the logarithm of nitrate concentration, as opposed to
the concentration level, a coefficient on initial nitrates equal to one, controlling for features
that determine the flow of nitrate pollutants, could be consistent with constant nitrate
concentrations within the time frame considered, as depicted in panel (a) of Figure 3 for two
wells, A and B, whose concentrations are observed at two time periods, Ty and 7). Constant
nitrate concentrations over time could be obtained if the twelve-year period considered was
too short for nitrates leached during the initial period to reach the water table (which would
explain why the coefficients on land use are not statistically significant) and if there were
negligible attenuation of the stock of nitrates initially present in groundwater over a decade.
The absence of attenuation would align with research by Landon et al. (2011) showing that
denitrification—the process by which natural processes convert nitrates to nitrogen gas—
has minimal impact on nitrate concentrations in the San Joaquin Valley. Similarly, other

attenuation mechanisms, such as the assimilation of nitrates into microbial biomass, appear
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Figure 3: Possible Evolution of Nitrate Concentrations Over Time

to have a limited effect in reducing nitrate levels in this context (Rivett et al., 2008).

However, Table 2 suggests that, on average, nitrate pollution has worsened during the

period. Panel (b) of Figure 3 depicts nitrate accumulation pathways for two wells that are

driven by stationary nitrate emissions, resulting in linear trajectories, where the slope of

the trajectory is a direct function of land use and biophysical characteristics at each well.
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Because the relative difference in concentrations between wells is constant over time and
our cross-sectional approach essentially compares wells subject to different conditions, the
process depicted in panel (b) of Figure 3 is consistent with our findings that (i) nitrate
concentrations have increased during the period of investigation, (ii) the coefficient on initial
concentrations in a regression in logarithms is close to one, (iii) land use and biophysical
factors have little explanatory power once initial concentrations are controlled for, and (iv)
the model fit of the regression with initial concentrations is large. The fact that variation
in recent nitrate concentrations is explained by initial conditions, rather than covariates

describing subsequent land uses, also points to the legacy nature of groundwater nitrates.

Table 4: Land Use Shares Regressed on Well Fixed Effects

Dependent variable:

Low-NHI High-NHI Fallow  Pastire Low-int. High-int. Undevel.
crops crops devel. devel.
Obs. 12,032 12,032 12,032 12,032 12,032 12,032 12,032
R? 0.92196 0.94098  0.82213 0.88985 0.94807  0.98056  0.93987
|€i] > 0.10  2.74% 5.09% 0.81% 10.14%  3.01% 2.79% 7.75%
o Yithin 0.03 0.04 0.02 0.06 0.04 0.04 0.06
O 0.12 0.17 0.05 0.18 0.18 0.26 0.23

Note: Row 2 shows the R? of a two-period panel of land use shares regressed on well fixed effects using
mean land use shares in 2007-2011 and 2019-2023. Row 3 displays the percent of observations with
absolute residuals greater than 0.1 (10 pp.) from the regression. Row 4 reports the standard deviation of
the residuals from the regression. Row 5 reports the overall standard deviation in the two-period panel.
Of course, linear accumulation of nitrates in groundwater over time would require the
leaching process to be stationary, but our data suggest that this assumption may be plausible.
Table 4 assesses the temporal variation in land use shares between the endpoints of our study
period based on a panel regression of land use shares on well fixed effects. Observations
represent 5-year averages of land uses during the recent and initial periods, therefore there
are two time periods per panel. The R-squared, reported in the second row, measures the
proportion of variation in land use shares that is due to cross-sectional differences, the rest

being attributable to variations over time. The third row reports the percentage of residuals

from each model that exceed 10 percentage points in absolute value, connoting a change in the
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land use share by a magnitude larger than 20 percentage points over the period. The fourth
row reports the within-well standard deviations, which are generally much smaller than
the overall standard deviations reported in the last row. We provide additional graphical
evidence of the limited variation in land uses over time in Appendix Figure B.1, which plots
the histogram of the residuals from regressing land uses on well fixed effects using annual
data from 2007 to 2023. The limited temporal variation suggested by these various measures
indicates that the assumption of stationarity may be justified in our context.?? If land use
around wells does not vary much over time, initial nitrate concentrations may plausibly act
as a sufficient statistic for subsequent land use patterns, resulting in small and insignificant
effects of land use variables in the regression based on Equation (1).

Regressing untransformed nitrate concentrations on land use shares and controls pro-
vides further insights into the trajectory of nitrate concentrations over time. In regressions
where nitrate concentrations are expressed in levels rather than logarithms, a coefficient
on initial nitrate concentrations exceeding one implies divergent trends across wells consis-
tent with panel (b) of Figure 3, whereas a coefficient equal to one indicates parallel trends.
Appendix Table C.1 presents results of such regressions, with coefficients on initial nitrate
concentrations estimated at 0.99 and 0.97 in columns (3) and (4), respectively—values that
are not statistically different from one. When combined with the unitary coefficient on ini-
tial nitrates in the regressions in logarithms, these results provide support for near-constant
concentrations, as illustrated in panel (a) of Figure 3. However, they do not preclude the
interpretation of panel (b) as a valid representation of nitrate evolution over long periods of
time. Specifically, the effective lag of 12 years may simply be insufficient to capture nitrate
accumulation (or decomposition) despite the observed increase in mean nitrate concentra-
tions (see Table 2). In this context, panel (a) may more accurately characterize the dynamics
of groundwater contamination over the study period, whereas panel (b) could be applicable

for longer durations. An alternative explanation is that nitrate decomposition offsets the

22We cannot test for stationarity of cattle populations as we observe them in a single year.
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addition of new nitrates, resulting in relatively stable concentrations over time.

These considerations point to a critical trade-off inherent in observational studies seeking
to identify the contributions of land use to groundwater contamination. On the one hand,
clean identification of land use impacts requires controlling for initial concentrations. On
the other hand, because land uses tend to change slowly over time, land use determinants
of incremental contamination may be highly correlated with those that explain initial con-
centrations, resulting in de facto collinearity and the impossibility of identifying land use
contributions conditional on initial conditions, particularly if nitrates emitted in the past
remain in the environment for extended periods of time. Under that interpretation, regres-
sions that omit initial concentrations, such as those reported in columns (1), (2), and (5)
of Table 3, indicate long-run land use impacts, provided that the land use shares used as

explanatory variables proxy for long-run patterns.

4.3 Sensitivity Analysis

In this section, we assess the sensitivity of the results to assumptions regarding the nitrate
accumulation process over space and time, data measurement issues, sample definition, and
model specification. We also investigate the heterogeneity of effects along key environmental
characteristics of wells.

An immediate concern is that our preferred 500-meter buffer is too narrow. We thus
construct a 1 km buffer and recalculate the mean land use shares, soil characteristics, and
drainage share using similar spatial methods as those described in the data section. Summary
statistics are provided in Appendix Table A.2 and reveal slightly higher mean 2007-2011 land
use shares within 1 km of wells used for low- and high-NHI crops, fallow, and undeveloped
land, and a lower share of land used for urban development. The results obtained with the
1 km buffer are reported in Table 5, which has the same structure as the first four columns
of Table 3. Estimates are similar in magnitude and significance to those in Table 3, with

some exceptions. Column (3) reveals significant coefficients on high-NHI crops, pasture,
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Table 5: Impacts of Mean 2007-2011 Land Use Shares Within 1 km of Wells on Mean 2019—
2023 Nitrate Concentrations

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) (3) (4)
Low-NHI crops 0.61** 0.52* -0.19* 0.05
(0.26)  (0.32)  (0.10) (0.14)
High-NHI crops 2.0%** 1.5%** 0.31** 0.24
(0.31) (0.29) (0.13) (0.15)
Fallow -0.88 0.84 -0.13 0.38
(0.64) (0.83) (0.18) (0.34)
Pasture 1.3%* 0.80***  0.14** 0.11
(0.18) (0.26) (0.07) (0.10)
Low-intensity development 1.5%** 1.1+ 0.18** 0.15%
(0.24) (0.18) (0.09) (0.09)
High-intensity development — 1.4*** 1.0%** 0.07 0.15
(0.26) (0.27) (0.07) (0.11)
Cattle within 1km 0.17** 0.15** 0.02 0.010
(0.07) (0.08) (0.07) (0.07)
Cattle within 1-5km 0.001 -0.01 0.002 0.001
(0.02) (0.02)  (0.009) (0.01)
Surface water deliveries 0.05* 0.05**  -0.0006 —9.7 x 107°
(0.03)  (0.004) (0.003) (0.001)
Precipitation -0.53***  -0.05  -0.19*** 0.04
(0.14) (0.38) (0.05) (0.13)
Depth to groundwater 0.001 -0.004  0.0008 0.006
(0.01) (0.02)  (0.004) (0.005)
Drainage -2.0%** -1.5* -0.40* -0.50***
(0.48)  (0.86)  (0.21) (0.17)
Sand 0.40 -0.19 -0.12 -0.38*
(0.35) (0.40) (0.18) (0.23)
Silt -0.25 -0.70 -0.46 -0.82**
(0.64)  (0.77)  (0.32) (0.41)
Organic matter -6.77F 6. T -0.74 -0.64
(2.1) (2.5) (0.74) (0.66)
Distance to river 0.25 0.51 0.17** 0.16*
(0.27) (0.34) (0.07) (0.09)
Initial nitrate concentration 1.0%** 0.98***
o o (0.02) (0.02)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.14928 0.32807 0.77251 0.79431

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Initial nitrate
concentration equals log nitrate concentration 2007-2011. Standard errors are clustered by sub-basin; *p <
0.10, **p < 0.05, ***p < 0.01.
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and low-intensity urban development at the 5% level, providing some evidence that these
land use shares are associated with increased nitrate concentrations twelve years later. By
including sub-basin fixed effects, as in column (4), we find a positive coefficient on low-
intensity development that is significant at the 10% level.

In Appendix Table C.2, we regress nitrate concentrations on contemporaneous (2019
2023) land use shares. Although it is not possible to know with certainty how long the
leaching process from topsoil down to groundwater actually takes, based on prior literature,
contemporaneous land use is less likely to influence current groundwater nitrates than land
use measured in prior years. Consistent with this expectation, we find that the land use
coefficients in columns (1)—(2) of Table C.2 are smaller in magnitude compared to those in
Table 3, with a corresponding loss in statistical significance on the low-NHI crop coefficients.
Controlling for initial nitrates, as in columns (3)—(4), we also find a decrease in the magnitude
of most coefficients. The coeflicients on low-NHI crops in columns (3) and (4) and fallow in
column (3) are exceptions. Compared to Table 3, the coefficients on the control variables in
Table C.2 do not change much, and the R-squared values are very similar.

In another sensitivity test, we follow Keiser and Shapiro (2019a) and halve nitrate con-
centrations previously set at the detection limit for concentrations below the laboratory
detection limit. Summary statistics of these data are provided in Appendix Table A.3 and
show small decreases in mean nitrate concentrations compared to Table 2. Results of the
regressions using these revised data are provided in Appendix Table C.3. The results reveal
no notable changes in the magnitude or significance of the regression coefficients compared
to the estimates shown in the first four columns of Table 3.

The CDL, like other remotely sensed datasets, contains classification errors. Our method-
ology aggregates land uses into seven distinct categories, thereby combining crops that the
CDL may have difficulty differentiating. For instance, vegetable crops are incorporated into
the high-NHI crop group. However, fallow and pasture land do not have an associated NHI

value, rendering them unsuitable for classification into either low- or high-NHI crops; they
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also belong to the least accurate land covers in the CDL (Lark, Schelly, and Gibbs, 2021).
Therefore, in another sensitivity test, we aggregate fallow and pasture land use shares into
one category and present the results in Appendix Table C.4. The coefficient on pasture and
fallow across model specifications is close to the coefficient on pasture in Table 3. This is
not surprising, considering that 17% of land within 500 meters of wells is used for pasture,
compared to only 3% for fallow. Coefficients on the other regressors do not change much as
a result of aggregating pasture and fallow into a single land use category.

Given that our baseline category of undeveloped land comprises diverse environmental
characteristics, we investigate whether disaggregating this category into distinct forests,
deserts, wetlands, and other undeveloped land influences other land use coefficients. Results
from these specifications are reported in Appendix Table C.5, where forested land serves as
the base category. This change has little influence on our estimates, likely due to the fact
that forested land comprised a large share of the aggregated undeveloped land category.

We explore whether our results are sensitive to potential outlier wells through a sub-
sample analysis of only municipal wells and excluding wells in sub-basins with fewer than
10 reporting wells. Results from these specifications are included in columns (1) and (2),
respectively, of Appendix Table C.6, and mirror those of Table 3. We also test whether the
results are sensitive to choices regarding the definition of our outcome variable. Column
(3) of Appendix Table C.6 reports results using a 3-year window to average land uses and
nitrate concentrations instead of a 5-year window. Columns (4) and (5) use the difference
between 2019-2023 and 2007-2011 nitrate concentrations as the dependent variable, and
the results are comparable to those that instead control for initial concentrations. Finally,
Appendix Table C.7 uses annual nitrate concentrations in the years between 2019 and 2023
(instead of taking a 5-year average), which provides more observations; this change does not
meaningfully influence the coefficients. In summary, our main empirical results hold across
alternative sample definition and model specification choices.

Our primary results underscore the average long-run effects of land uses on groundwater
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nitrate concentrations. Yet, nitrates accumulate into groundwater differentially according
to environmental conditions (Skidmore, Andarge, and Foltz, 2023; Metaxoglou and Smith,
2025). Thus, in Appendix Table C.8 we test for heterogeneous treatment effects along
three dimensions: precipitation, soil type, and well depth. All columns decompose total
precipitation into three seasons. The seasons are defined as groupings of four consecutive
months, with breaks chosen to distinguish different precipitation regimes throughout the
year. Appendix Figure A.2 shows average precipitation by month across sample wells over
the period 2007-2023. It clearly identifies the dry summer season as comprising the months of
June-September, which forms the basis for our groupings. Column (1) indicates that seasonal
precipitation variables are not statistically significant. This result is not surprising as sub-
basin fixed effects already capture much of the cross-sectional variation in climate. Column
(2) interacts the high-NHI crop share with a dummy variable indicating whether a well
received higher annual precipitation than the sample median (over the years 2007-2011) and
shows that precipitation does not significantly amplify leaching. Similarly, column (3) shows
that springtime precipitation does not amplify leaching from high-NHI crops. These patterns
could be expected as fertilization in California usually happens through irrigation during
summer months, a period with very little precipitation. As a result, fertilizer application is
largely disconnected from rainfall events.”® Column (4) interacts the sand fraction of soil
with the high-NHI crop share and shows that crops grown in sandy soils drive the average
effect. Finally, column (5) interacts the high-NHI crop share with an indicator for whether
the well depth is below the median. While this coefficient indicates that shallower wells

accumulate more nitrates from high-NHI crops, it is not statistically significant.

23 Although not reported in Table C.8, a regression interacting the high-NHI crop share with a high
summer precipitation dummy shows no significant interaction.
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5 Costs and benefits of land use change

This section uses our regression estimates to contrast the costs and benefits of changing
land-use patterns to reduce nitrate leaching. Specifically, since our findings suggest that
high-NHI crops contribute more than low-NHI crops to groundwater contamination, we
study the economic impacts of replacing high-NHI crops with low-NHI crops across our
sample of wells. Our measure of opportunity costs is elicited from a simple positive model of
crop allocation borrowed from Costinot, Donaldson, and Smith (2016) that assumes farmers
allocate cropland based on highest returns. We measure benefits by combining our estimates
of land use contributions to nitrate concentrations and the predictions of our crop allocation
model with municipal treatment cost estimates from the literature, the idea being that lower
emissions at the source reduce the need for drinking water treatment. Because we wish to
study a policy that targets the highest-NHI crops, we use the coefficient estimates in column
(5) of Table 3 that distinguish between low- (NHI index equal to 1), medium- (NHI index

equal to 2), and high-NHI crops (NHI index equal to 3 or 4).

5.1 Opportunity costs of altering cropping patterns

Denote by L the land area occupied by low-, medium-, and high-NHI crops across our sample
of wells, and by I the set of crops that may be grown. This set may be further divided into
the set I_ of low-NHI crops, the set I, of medium-NHI crops, and the set I, of high-NHI
crops. As in Costinot, Donaldson, and Smith (2016), we assume that the returns R;(w) to
growing crops i € I are random across a continuum of parcels w € [0, 1] making up the land

area L. These returns are given by the following joint Fréchet distribution:

?

Pr[Ri(w) <1y, i € I] =exp [—’72 (%) ’

icl

where 6 > 1 is a parameter reflecting the degree of parcel heterogeneity and + can be chosen

so that E [R;(w)] = R; for all i € I, that is, R; represents the unconditional return to growing
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crop 7.2* Values of 6 close to one connote high heterogeneity in returns across parcels, whereas
larger values connote parcel homogeneity and, given a set of unconditional returns R;, lead
to more pronounced crop specialization.

Standard Fréchet algebra implies that, if farmers grow the highest-return crop on each

parcel w € [0, 1], the share of cropland grown in crop i is given by

i = Pr [ Ri) = max By ()] = Z”;R )

and the expected return per unit land conditional on growing crop 7 is

B || () = max Byo)| = (Z R?)é .

jel

Thus, the average return per unit land once land has been allocated is identical across crops

and the total land rent is

LRL(ZR§>é .

jeI

= %{. Conditional on a value of the land

Suppose that we observe the average land rent R
heterogeneity parameter 6, one can deduce from Equation (2) the unconditional crop returns

that rationalize the observed cropping pattern:
1
Ri = Rﬂ'ie . (3)

Now, suppose that high-NHI crops are eliminated from the set of eligible crops so that
cropland is allocated to the set of medium- and low-NHI crops according to the highest

return on each parcel. The new land shares for crops ¢ € {I_, I} are given by

0
/ Rz
. =

A S
2jetr gy 1t

24Gpecifically, v =T (%)79, where T'(t) = fOJrOO ut~le "du for t > 0.
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and the new total land rent is

IR'=L| Y R/| =LR| > | . (4)
Je{l-,I+} Je{l-.I+}
where we have made use of Equation (3) in the second equality. Since ), ™ <1
LR’ < LR and the reduction in the total land rent represents the opportunity cost of replacing
high-NHI crops with either medium- or low-NHI crops. The only information needed to
compute this opportunity cost is the cropland area L, the average land rent R, the area
share ) jelr_ 1y} s and an estimate of the heterogeneity parameter 6.

The total area occupied by low-, medium-, and high-NHI crops in our sample is equal
to L = 161,958 acres, representing 13.9% of the total area surrounding sample wells. The
average rent for irrigated cropland in California across the years 2007-2011 was $350/acre
(in 2010 dollars) based on rent data from USDA/NASS and CPI data from the Bureau of
Labor Statistics. We take this value to be representative of the land rent for cropland located
around sample wells. In their study of the impact of climate change on crop production and
trade, Gouel and Laborde (2021) use a value for the land heterogeneity parameter 6 equal
to 1.1 and investigate sensitivity to values of 1.05 and 1.2. These values apply to a 1-degree
of latitude/longitude grid cell for farmland located anywhere across the globe. Since our
sample wells are scattered throughout California, California includes hundreds of such cells,
and it has a diverse agricultural landscape in terms of soils and climates, a higher degree of
heterogeneity in crop returns should be expected. We thus set § = 1.01.2°

In addition to the scenario described above, we investigate a more ambitious program
that would eliminate both high- and medium-NHI crops, leaving crops within the set I_ as
the only available choices around sample wells. Equation (4) is readily adapted to compute
opportunity costs in that scenario.

The resulting opportunity costs are shown in Panel A of Table 6. In scenario (1), which

25Costinot, Donaldson, and Smith (2016) estimate 6 to be equal to 2.46, but this value applies to 5-arc-
minute grid cells, that is, much smaller areas for which heterogeneity in crop returns is arguably smaller.
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Table 6: Opportunity Costs and Anticipated Benefits from Crop Switching Around Wells

Scenario (1) Scenario (2)
Panel A: Opportunity costs
Type of crops being eliminated NHI-3/NHI-4 NHI-2/NHI-3/NHI-4
Initial cropland share of remaining crops (%) 96.0 36.6
Opportunity cost of crop reallocation ($1,000) 2,245 35,731
Panel B: Benefits
Initial land share of crops being eliminated (%) 0.55 8.80
Reduction in nitrate concentration, r (%) 1.02 4.60
Treatment cost savings, small systems ($1,000) 5,340 24,080
Treatment cost savings, large systems ($1,000) 110 498
Total cost savings ($1,000) 5,450 24,578

Note: Estimates of benefits are based on coefficient estimates in column (5) of Table 3.

targets high-NHI crops, only 4% of the initial cropland is affected by the crop ban and is
converted to medium- and low-NHI crops at an opportunity cost of $2,245,000. In contrast,
scenario (2) bans both high- and medium-NHI crops, which occupy 63.4% of initial cropland.
As a result, opportunity costs reach $35,731,000. Note that since § > 1, an upper bound
to the opportunity cost of crop switching is obtained by letting & — 1, which yields a value
of $35,939,000 in scenario (2). With § = 1.2, the largest value considered in the study by

Gouel and Laborde (2021), the opportunity cost decreases to $32,155,000.

5.2 Anticipated benefits from lowering nitrate concentrations

The scenarios described above—replacing higher-NHI crops surrounding sample groundwater
wells with lower-NHI crops—will yield social benefits to users of the groundwater resource.
These benefits may manifest through a variety of channels, including improved human health
outcomes, increased property values, and reduced drinking water treatment costs. (The vast
majority of our sample wells are municipal wells.) Due to drinking water regulations in the
U.S., it is likely that the costs and benefits of perturbations in nitrate contamination in
drinking water are primarily borne by the municipal water provider (Mosheim and Ribaudo,

2017; Cullmann et al., 2024), and are only realized by the consumer in the most extreme
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cases that result in violations (Hadachek, 2024). Therefore, this exercise focuses on the
drinking water treatment cost savings arising from changes in nitrate concentration.

To translate these changes into monetary values, we rely on treatment costs elasticities
with respect to changes in water source nitrate levels from Mosheim and Ribaudo (2017).
Importantly, these authors show that drinking water treatment exhibits scale economies, as
small systems incur higher marginal costs than larger ones. They predict that treatment
costs increase by 0.03% ($2,280 annually) for small public water systems and by 0.004%
($304 annually) for larger public water systems for a 1% increase in nitrate concentration.?®
The groundwater wells in our California sample belong to 2,296 small public water systems
(< 3,300 people as defined by the EPA) and 356 larger public water systems.

We scale these treatment cost savings to the state level and to reflect the change in nitrate
concentrations from the two land use scenarios. For a % reduction in nitrate concentration,
small public water systems in California would save $2, 280 x 2,296 x r annually, while larger
water systems would save $304 x 356 x r. We use baseline land shares, the predictions
from the land allocation model, and the coefficient estimates from column (5) of Table 3 to
compute the reduction in nitrate concentrations, r, for each scenario.

The results are reported in Panel B of Table 6. For scenario (1), which focuses on the
highest-NHI crops occupying only 4% of the cropland around wells, total water treatment
benefits exceed opportunity costs by a factor of more than two, indicating that banning
these crops around wells would be economically justified. However, this land use change
only achieves a 1.02% reduction in nitrate contamination. In contrast, a policy targeting
medium-NHI in addition to high-NHI crops would achieve a 4.60% reduction in nitrates
and bring anticipated benefits of $24,578,000. While these benefits do not exceed opportu-
nity costs, they demonstrate the large magnitude of external benefits that may accrue to

other users of groundwater. In our context, where high-value agriculture and groundwater-

26The 1996 American Water Works Association survey reports that annual variable costs are $5.5 million
on average per water system (Mosheim and Ribaudo, 2017). We inflate these values to 2010 dollars using
the CPI and assign an average variable cost of $7.6 million.
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dependent communities are in close proximity, external benefits are about 69% of the private
opportunity costs of the alternative land use in scenario (2). In other contexts, where agri-
cultural rental rates are lower, land use policy may represent an economically beneficial

abatement strategy for nitrogen contamination even at more ambitious abatement targets.

6 Conclusion

This study examines the relationship between land use and groundwater nitrate concen-
trations using a sample of 6,016 groundwater wells in California. Our findings indicate
significant associations between agricultural and urban land use shares and nitrate concen-
trations. The most pronounced effects are observed for high-NHI (Nitrogen Hazard Index)
crops, which occupy 9% of the area surrounding wells. Specifically, a 10 percentage point
increase in the high-NHI land share is associated with an 11.6% rise in nitrate concentrations
relative to undeveloped land. Similarly, urban land uses, whether high- or low-intensity de-
velopment, contribute about a 10% increase in nitrate concentrations for every 10 percentage
point increase in land use share. These significant associations underscore the importance of
directing groundwater quality programs toward emissions from both agricultural and urban
land uses in regions where wells exhibit poor or deteriorating water quality. Focusing solely
on agricultural emissions could overlook cost-effective opportunities to improve well water
quality through better management of urban developments.

A key challenge uncovered by our analysis is the difficulty to identify the incremental im-
pact of land use on nitrate concentrations using observational data. Our results demonstrate
that initial nitrate concentrations almost entirely explain the observed nitrate concentrations
a decade or so later, likely due to the legacy nature of agricultural nitrogen in groundwater
and the limited temporal variation in land use surrounding wells over time. That is, land
use patterns that explain nitrate concentrations at the beginning of our period are likely

close to those we use to explain subsequent contamination, so that conditioning on initial
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concentrations renders our land use variables redundant, explaining the overall decrease in
size and statistical significance for their estimated effects, as well as the near-unit coefficient
estimate on initial concentrations. Addressing this empirical challenge may require a multi-
decade study relating long-term variation in land use on nitrate concentrations, or a focus
on shallow wells, although current data constraints prevent such analyses. Studies focusing
on other groundwater regions may face similar challenges, especially if cropping alternatives
are more limited and urban development less rapid than in the California context.

Interpreting our land use variables as capturing a stationary source of nitrates, that is,
not conditioning on initial concentrations, we are able to document meaningfully smaller co-
efficients on low-NHI crops compared to high-NHI crops, consistent with the definition of the
NHI. To our knowledge, this is the first study to apply the NHI within a regression analysis,
offering a novel approach to aggregating crops based on characteristics that influence nitrate
emissions below the root zone. The NHI provides a parsimonious method to relate land use
to nitrogen pollution, although further research is needed to compare the performance of
NHI-based estimates against other crop aggregation methods commonly used in economics,
such as those based on fertilizer application rates or traditional crop classifications (e.g., tree
nuts, vegetables, row crops, etc.). Our regression analysis also confirms the role of dairy
cattle as a meaningful determinant of nitrate concentrations.

Our analysis underscores the critical policy challenge of remediating nitrate contamina-
tion in groundwater through present-day land use changes. Indeed, our findings indicate
that there is significant persistence in groundwater nitrate levels even at a decadal scale.
As a result, regulatory attempts to rectify the anthropogenic contribution to groundwater
nitrates may not have identifiable impacts for several decades. More generally, the valuation
of groundwater quality degradation (or improvements) must account for the discounted value

of land use externalities many years into the future.
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Appendix

A Variable Descriptions and Summary Statistics

Table A.1: Land Use Categories

Categories

Land uses

Low-NHI crops; Nitrogen Hazard
Index 1

High-NHI crops; Nitrogen Haz-
ard Index 2

High-NHI crops; Nitrogen Haz-
ard Index 3

High-NHI crops; Nitrogen Haz-
ard Index 4

Low-intensity development

High-intensity development

Undeveloped land

Fallow

Pasture

Rice, alfalfa, peas, dry beans, vetch, apricots, grapes, olives, soy-
beans, lentils, chickpeas, and Christmas trees.

Barley, canola, corn, sugar beets, oats, rye, cotton, safflower,
sorghum, sunflower, winter wheat, spring wheat, durum wheat,
buckwheat, almonds, apples, avocados, cherries, citrus, nectarines,
oranges, peaches, pears, pecans, pistachios, plums, pomegranates,
prunes, walnuts, carrots, sweet potatoes, triticale, millet, other
small grains, other tree crops, camelina, sod grass seed, other hay
non-alfalfa, other crops, sugarcane. In addition, the Cropland Data
Layer defines the following double-cropped combinations: Winter
wheat and corn, triticale and corn, winter wheat and sorghum, oats
and corn, barley and corn, winter wheat and cotton, lettuce and
cotton, barley and sorghum, and durum wheat and sorghum.

Asparagus, cantaloupes, sweetcorn, cucumbers, eggplant, garlic,
honeydew melons, mint, potatoes, pumpkins, radishes, squash,
tomatoes, turnips, watermelons, popcorn, and ornamental corn.

Broccoli, cabbage, cauliflower, celery, lettuce, onions, mustard,
herbs, peppers, greens, strawberries, cranberries, blueberries, cane
berries, miscellaneous fruits and vegetables, and the following
double-cropped crops: lettuce and cantaloupe, lettuce and barley,
and lettuce and durum wheat.

Developed open space and developed low intensity.

Developed high intensity, developed medium intensity, and aqua-
culture.

Clover wildflowers, barren, shrubland, evergreen forest, woody wet-
lands, herbaceous wetlands, deciduous forest, mixed forest, forest,
perennial ice and snow, and wetlands.

Fallow and idle cropland.

Pasture and grassland.

Note: The table includes land uses that appear within 500 meters of sample wells.
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Table A.2: Summary Statistics of Land Use Shares, Soil Char-
acteristics, and Drainage Within One Kilometer of Wells

Mean Std. Dev. Min. Max.

Low-NHI crops 0.06 0.11 0 0.90
High-NHI crops 0.11 0.17 0 0.84
Fallow 0.03 0.05 0 0.59
Pasture 0.18 0.20 0 0.97
Low-intensity development  0.27 0.17 0 0.91
High-intensity development 0.20 0.24 0 0.95
Undeveloped land 0.15 0.22 0 1.00
Sand 0.55 0.19 0.06 0.97
Silt 0.26 0.10 0.01 0.69
Clay 0.19 0.10 0.01  0.60
Organic matter 0.01 0.01 0 0.31
Drainage 0.01 0.04 0 0.74

Note: Effective sample size is 6,016 wells. Mean land use shares in 2007
through 2011.

Table A.3: Summary Statistics Using Nitrate Concentrations Equal to
Half the Detection Limit for Concentrations Below the Detection Limit

Mean Std. Dev. Min. Max.

Nitrate concentration in 2019-2023 2.80 3.64 0.002 67.28
Nitrate concentration in 20072011  2.60 3.10 0.01 56.44

Note: Effective sample size is 6,016 wells.
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B Residuals from regression of land uses on well fixed

effects
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Figure B.1: Histograms of Residual Variation in Land Use Shares about Well Fixed Effects

Note: Residuals are from panel regressions of a particular land use share on well fixed effects using annual
observations from 2007 to 2023.
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C Robustness checks
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Table C.1: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations: Estimated Using Nitrate Concentrations in Levels

Dependent variable:
Nitrate concentration 2019-2023

(1) (2) 3) (4)

Low-NHI crops 2.0%** 2.4%** -0.40 -0.17
(0.60) (0.77) (0.29) (0.31)
High-NHI crops 5.9*** 4.8%* 1.1 0.93***
(0.92) (0.84) (0.38) (0.35)
Fallow -1.5 2.1 0.06 1.0%**
(1.7) (1.7) (0.56) (0.38)
Pasture 2.9%** 1.7 0.18 -0.04
(0.56) (0.75) (0.21) (0.26)
Low-intensity development 3.4+ 2.4%% 0.39 0.26
(0.57) (0.45) (0.27) (0.22)
High-intensity development — 2.8*** 2.1 -0.03 -0.05
(0.59) (0.55) (0.22) (0.22)
Cattle within 1km 0.50** 0.41** 0.18 0.17
(0.20) (0.20) (0.23) (0.23)
Cattle within 1-5km 0.02 -0.03 0.02 0.02
(0.04) (0.04) (0.03) (0.03)
Surface water deliveries 0.29* 0.30***  -0.010 0.003
(0.15) (0.08) (0.01) (0.01)
Precipitation -1 -1.1 -0.19** -0.13
(0.30) (1.1) (0.09) (0.34)
Depth to groundwater -0.006 -0.05 0.008 0.02
(0.04) (0.06) (0.02) (0.02)
Drainage -1.9** -1.6 0.27 0.05
(0.92)  (1.3)  (0.61)  (0.54)
Sand 0.65 -1.3 -0.18 -0.55
(0.82) (0.90) (0.39) (0.34)
Silt -1.1 -2.1 -0.70 -0.83
(1.3) (1.6) (0.57) (0.65)
Organic matter -6.2** -8.4%* -0.35 -0.90
(2.6) (4.0) (0.98) (1.3)
Distance to river 1.3 1.9* 0.63** 0.59*
(0.85) (0.98) (0.29) (0.34)
Initial nitrate concentration 0.99***  0.97***
B o (0.04)  (0.04)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.08296 0.22382 0.72275 0.73981

Note: Undeveloped land is the default land use, and clay is the default soil textural fraction. Initial nitrate
concentration equals mean nitrate concentration 2007-2011. Standard errors are clustered by sub-basin;
*p < 0.10, **p < 0.05, ***p < 0.01.
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Table C.2: Impacts of Mean 2019-2023 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) 3) (4)

Low-NHI crops 0.32 0.37 -0.32***  -0.16
(0.24) (0.27) (0.08) (0.10)
High-NHI crops 1.4%** 1.0%** 0.18** 0.13
(0.24)  (0.21)  (0.09)  (0.10)
Fallow -0.98 0.04 -0.11 0.27
(0.70) (0.78) (0.24) (0.33)
Pasture 1.1%* 0.63*** 0.07 -0.04
(0.19) (0.21) (0.08) (0.09)
Low-intensity development — 0.98***  (0.81*** 0.06 0.05
(0.19) (0.14) (0.07) (0.06)
High-intensity development — 1.2***  (.83*** 0.06 0.07
(0.20) (0.16) (0.06) (0.07)
Cattle within 1km 0.19*** 0.16** 0.02 0.01
(0.07) (0.07) (0.07) (0.07)
Cattle within 1-5km 0.006 -0.01 0.002 0.001
(0.02) (0.02) (0.01) (0.01)
Surface water deliveries 0.04 0.05***  -0.002  -0.0003
(0.03)  (0.004) (0.003) (0.001)
Precipitation -0.48***  -0.18 -0.17**  0.010
(0.15) (0.38) (0.05) (0.12)
Depth to groundwater 0.010 0.003 0.002 0.008
(0.02) (0.02)  (0.004) (0.005)
Drainage -1.3*** -0.71 -0.18 -0.25*
(0.38) (0.55) (0.16) (0.13)
Sand 0.27 -0.29 -0.17 -0.40**
(0.36) (0.31) (0.16) (0.17)
Silt -0.25 -0.72 -0.47  -0.76***
(0.55) (0.57) (0.26) (0.29)
Organic matter -4.9%F 4.3 -0.31 -0.51
(1.6) (1.9) (0.64) (0.69)
Distance to river 0.19 0.47 0.16** 0.15*
(0.28) (0.35) (0.06) (0.09)
Initial nitrate concentration 1.0%* 0.98***
o o (0.02)  (0.02)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.12841 0.32444 0.77276  0.79448

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Initial nitrate
concentration equals log nitrate concentration 2007-2011. Standard errors are clustered by sub-basin; *p <
0.10, **p < 0.05, ***p < 0.01.
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Table C.3: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations Using Nitrate Concentrations Equal to Half the
Detection Limit for Concentrations Below the Detection Limit

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) (3) (4)

Low-NHI crops 0.93**  0.72* -0.31***  -0.03
(0.30)  (0.34)  (0.11)  (0.14)
High-NHI crops 2.0 1.2%*  0.20 0.16
(0.40)  (0.37)  (0.15)  (0.16)
Fallow 058 092  -0.01  0.53
(0.79)  (0.91)  (0.21)  (0.32)
Pasture 16" 0.92%*  0.09 0.09

(0.20) (0.29) (0.08) (0.11)
Low-intensity development 1.7+ 1.2%%* 0.14 0.14*
(0.22) (0.18) (0.08) (0.08)
High-intensity development — 1.7"** 1.2%%* 0.06 0.16*
(0.26) (0.26) (0.08) (0.09)

Cattle within 1km 0.21* 0.17* 0.01 0.007
(0.09) (0.10) (0.07) (0.07)
Cattle within 1-5km 0.006 -0.01 0.001  -0.0002
(0.02) (0.02) (0.01) (0.01)
Surface water deliveries 0.05* 0.06*** 0.003 0.004
(0.03)  (0.007) (0.004) (0.004)
Precipitation -0.71%**  -0.03  -0.25*** 0.03
(0.16) (0.46) (0.06) (0.15)
Depth to groundwater 0.010 0.005 0.002 0.007
(0.02) (0.02)  (0.005) (0.006)
Drainage -2.1%** -1.1 -0.40 -0.37*
(0.42)  (0.69)  (0.25)  (0.21)
Sand 0.53 -0.23 -0.13 -0.39**
(0.40) (0.37) (0.18) (0.19)
Silt -0.005 -0.68 -0.43 -0.78**
(0.66) (0.68) (0.30) (0.33)
Organic matter -6.9*** -5.4** -0.06 -0.13
(1.9) (2.3) (0.55) (0.64)
Distance to river 0.27 0.57 0.20***  0.20**
(0.31) (0.38) (0.07) (0.09)
Initial nitrate concentration 0.97***  0.96***
- o (0.02)  (0.02)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.14863 0.33352 0.78150 0.80274

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Initial nitrate
concentration equals log nitrate concentration 2007-2011. Standard errors are clustered by sub-basin; *p <
0.10, **p < 0.05, ***p < 0.01.
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Table C.4: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations: Aggregated Share of Land Used for Pasture and

Fallow

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) 3) 4)

Low-NHI crops 0.70***  0.60**  -0.23** -0.02
(0.27) (0.30) (0.10) (0.13)
High-NHI crops 1.67* 1.17%* 0.20 0.14
(0.35) (0.31) (0.14) (0.15)
Pasture and fallow 1.2%%%  0.75"* 0.10 0.10
(0.17) (0.24) (0.07) (0.09)
Low-intensity development 1.4 0.96*** 0.11 0.09
(0.20) (0.16) (0.07) (0.07)
High-intensity development 1.4%** 1.0%** 0.08 0.11
(0.23) (0.23) (0.07) (0.09)
Cattle within 1km 0.19** 0.15* 0.02 0.009
(0.08) (0.08) (0.07) (0.07)
Cattle within 1-5km 0.01 -0.01 0.004 0.003
(0.02) (0.02)  (0.009) (0.01)
Surface water deliveries 0.05* 0.05***  -0.001  -0.000028
(0.03)  (0.004) (0.003) (0.001)
Precipitation -0.51"*  -0.12  -0.19*** 0.001
(0.13) (0.39) (0.05) (0.12)
Depth to groundwater 0.006 0.001 0.002 0.007
(0.01) (0.02)  (0.004) (0.005)
Drainage -1.6%** -0.84 -0.33* -0.29**
(0.36) (0.58) (0.18) (0.13)
Sand 0.39 -0.27 -0.16 -0.39**
(0.35) (0.30) (0.16) (0.17)
Silt -0.16 -0.68 -0.45* -0.74**
(0.56) (0.57) (0.27) (0.30)
Organic matter B 4.2%F -0.43 -0.47
(1.6) (1.9) (0.61) (0.67)
Distance to river 0.25 0.51 0.16** 0.16*
(0.27) (0.34) (0.07) (0.09)
Initial nitrate concentration 1.0%* 0.98***
B - (0.02) (0.02)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.13329 0.32331 0.77202  0.79412

Note: The regressor fallow and pasture equals the sum of the mean share of land used for fallow and

pasture.

nitrate concentration equals log nitrate concentration 2007-2011.

basin; *p < 0.10, **p < 0.05, ***p < 0.01.

Undeveloped land is the default land use and clay is the default soil textural fraction.

Initial
Standard errors are clustered by sub-
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Table C.5: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations: Disaggregated Undeveloped Category

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) 3) (4)

Low-NHI crops 0.74*** 0.41 -0.23** -0.02
(0.26) (0.32) (0.10) (0.13)
High-NHI crops 1.8 0.98*** 0.21 0.14
(0.34) (0.30) (0.14) (0.14)
Fallow -0.43 0.74 0.007 0.48*
(0.62) (0.74) (0.17) (0.26)
Pasture 1.3%%* 0.58** 0.11 0.06
(0.18) (0.24) (0.07) (0.10)
Low-intensity development 1.4**  0.80*** 0.12 0.09

(0.20) (0.16) (0.07) (0.07)
High-intensity development 147  0.83*** 0.08 0.13
(0.23) (0.23) (0.07) (0.09)

Wetlands -0.79 -1.2* 0.07 0.03
(0.70) (0.62) (0.28) (0.28)
Deserts -3.0 -2.2% -1.1 -0.73
(2.3) (1.2) (1.4) (1.1)
Other undeveloped 2.6 1.1 1.1 0.58
(2.3) (1.2) (1.4) (1.1)
Cattle within 1km 0.19** 0.16** 0.02 0.010
(0.07) (0.08) (0.07) (0.07)
Cattle within 1-5km 0.009 -0.01 0.004 0.002
(0.02) (0.02)  (0.009)  (0.01)
Initial nitrate concentration 1.0**  0.98%**
- - (0.02)  (0.02)
Sub-basin FE No Yes No Yes
Observations 6,016 6,016 6,016 6,016
R? 0.14001 0.32535 0.77215 0.79434

Note: Forested land is the default land use. All regressions include the same environmental controls
as the primary specifications in Table 3, but they are omitted here since the respective coefficients
are approximately the same. Initial nitrate concentration equals log nitrate concentration 2007-2011.
Standard errors are clustered by sub-basin; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table C.6: Impacts of Mean Land Use Shares Within 500 meters of Wells on Mean Nitrate
Concentrations: Different Sample and Outcome Definitions

Dependent variable:

Log nitrate concentration A Log concentration
Model: (1) (2) (3) (4) (5)
Municip. only > 10 wells 3-year avg.
Low-NHI crops 0.82%** 0.69** 0.65** -0.23** -0.02
(0.24) (0.33) (0.26) (0.10) (0.13)
High-NHI crops 1.1 1.2%%* 1.1 0.21 0.12
(0.31) (0.33) (0.31) (0.13) (0.14)
Fallow 0.85 0.93 0.84 0.02 0.47*
(0.75) (0.77) (0.75) (0.16) (0.25)
Pasture 0.75%** 0.84*** 0.75%** 0.11* 0.06
(0.25) (0.27) (0.24) (0.07) (0.10)
Low-intensity development 0.96*** 1.1%%* 0.96*** 0.12* 0.08
(0.16) (0.18) (0.17) (0.06) (0.07)
High-intensity development 1.0%** 1.1%%* 1.0%** 0.08 0.12
(0.22) (0.24) (0.21) (0.06) (0.09)
Cattle within 1km 0.15* 0.15* 0.15* 0.02 0.007
(0.08) (0.08) (0.08) (0.07) (0.07)
Cattle within 1-5km -0.01 -0.009 -0.010 0.004 0.003
(0.02) (0.02) (0.02) (0.009) (0.01)
Surface water deliveries 0.05%** 0.06™** 0.05*** -0.001 -0.001
(0.004) (0.004) (0.003) (0.003) (0.0009)
Precipitation -0.06 -0.05 -0.10 -0.19%** 0.03
(0.39) (0.40) (0.38) (0.05) (0.12)
Depth to groundwater 0.001 0.0003 0.002 0.002 0.007
(0.02) (0.02) (0.02) (0.004) (0.005)
Drainage -0.83 -0.94 -0.88 -0.33* -0.30**
(0.56) (0.63) (0.58) (0.17) (0.13)
Sand -0.37 -0.27 -0.28 -0.16 -0.39**
(0.30) (0.31) (0.31) (0.16) (0.17)
Silt -0.83 -0.68 -0.69 -0.45* -0.75**
(0.56) (0.58) (0.56) (0.27) (0.30)
Organic matter -4.4** -4.4** -4.2%* -0.43 -0.36
(2.0) (2.1) (1.9) (0.62) (0.66)
Distance to river 0.51 0.49 0.51 0.16™* 0.15*
(0.34) (0.35) (0.34) (0.06) (0.08)
Sub-basin FE Yes Yes Yes No Yes
Observations 5,998 5,492 6,016 6,016 6,016
R? 0.32387 0.28396 0.32357 0.03211 0.12611

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Column
(1) excludes non-municipal wells. Column (2) excludes sub-basins with fewer than 10 wells. Column
(3) takes three-year averages (2007-2009 and 2021-2023) of the variables, instead of 5. The dependent
variables in columns (4) and (5) are the differences in log nitrate concentration. Standard errors are
clustered by sub-basin; *(p < 0.10), **(p < 0.05), ***(p < 0.01).
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Table C.7: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Annual Nitrate Concentrations, 2019-2023

Dependent variable:
Log nitrate concentration

(1) (2) 3) (4)

Low-NHI crops 0.51**  0.66™* -0.30"*  -0.13
(0.24)  (0.25)  (0.08)  (0.11)
High-NHI crops 1.4%** 1.0%** 0.17* 0.12
(0.25) (0.23) (0.10) (0.10)
Fallow -0.29 0.41 0.04 0.34*
(0.51) (0.49) (0.19) (0.17)
Pasture 1.2%%*  0.69*** 0.003 -0.05
(0.20)  (0.22)  (0.10)  (0.10)
Low-intensity development 1.07*  0.88*** 0.02 0.07
(0.19) (0.14) (0.07) (0.06)
High-intensity development — 1.3"**  (0.95*** 0.08 0.10
(0.21) (0.17) (0.07) (0.07)
Cattle within 1km 0.14* 0.09 0.02 0.005
(0.07) (0.07) (0.06) (0.06)
Cattle within 1-5km 0.01 -0.01 0.006 0.002
(0.02) (0.02)  (0.008) (0.010)
Surface water deliveries 0.04 0.05***  -0.003 -0.002
(0.03)  (0.006) (0.003) (0.003)
Precipitation -0.47*  -0.17  -0.20"*  -0.11
(0.16) (0.39) (0.06) (0.12)
Depth to groundwater 0.01 0.005 0.005 0.006
(0.02) (0.02)  (0.005) (0.006)
Drainage -1.6*** -0.86* -0.34 -0.27
(0.36) (0.50) (0.21) (0.17)
Sand 0.25 -0.33 -0.27 -0.40**
(0.39) (0.31) (0.20) (0.20)
Silt -0.31 -0.73 -0.68™  -0.78"*
(0.62) (0.57) (0.32) (0.31)
Organic matter -5.6%** -4.7** -0.64 -0.63
(20)  (22)  (0.93)  (0.82)
Distance to river 0.24 0.49 0.18*** 0.14*
(0.28) (0.35) (0.06) (0.08)
Initial nitrate concentration 1.1%% 1.0%**
- o (0.02)  (0.02)
Sub-basin FE No Yes No Yes
Observations 15,444 15,444 15,444 15,444
R? 0.12439 0.31535 0.71554 0.74110

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. Initial nitrate
concentration equals log nitrate concentration 2007-2011. Standard errors are clustered by sub-basin;
*p < 0.10, **p < 0.05, **p < 0.01.
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Table C.8: Impacts of Mean 2007-2011 Land Use Shares Within 500 meters of Wells on
Mean 2019-2023 Nitrate Concentrations: Heterogeneity Based on Biophysical Conditions

Dependent variable:
Log nitrate concentration 2019-2023

(1) (2) (3) (4) (5)

Low-NHI crops 0.63** 0.60** 0.61** 0.57* 0.62**
(0.31) (0.30) (0.31) (0.30) (0.30)
High-NHI crops 1.1 1.2%%* 1.3%%* 0.42 1.1
(0.30) (0.34) (0.35) (0.52) (0.30)
High-NHI crops x High precip -0.34
o (0.45) o o o
High-NHI crops x High Feb.—May precip -0.32
o o (0.38) o o
High-NHI crops x Sand 1.5%*
o o o (0.78) o
High-NHI crops x Shallow well 0.18
o o - o (0.31)
Cumulative Feb.-May precip. 3.1 4.0 4.3 2.9 3.1
(4.7) (4.7) (4.9) (4.7) (4.7)
Cumulative June—Sept. precip. 0.44 -1.3 -1.6 0.69 0.42
(11.5) (11.2) (11.7) (11.5) (11.5)
Cumulative Oct.—Jan. precip. -1.3 -0.77 -1.2 -1.2 -1.3
(1.3) (1.3) (1.3) (1.3) (1.3)
High precip. -0.14
B (0.11) o - o
High Feb.-May precip. -0.19*
o o (0.11) o -
Sand -0.28 -0.28 -0.27 -0.47 -0.28
(0.31)  (0.32)  (0.31)  (0.31)  (0.31)
Silt -0.70 -0.66 -0.66 -0.72 -0.70
(0.57) (0.60) (0.58) (0.56) (0.57)
Sub-basin FE Yes Yes Yes Yes Yes
Observations 6,016 6,016 6,016 6,016 6,016
R? 0.32368 0.32639 0.32502 0.32472 0.32383

Note: Undeveloped land is the default land use and clay is the default soil textural fraction. High pre-
cipitation variables are indicators for above-median precipitation over the years 2007-2011. Cumulative
precipitation variables are computed over the years 2007-2023. Shallow well is an indicator variable for
below-median depth to groundwater. All regressions include controls for cattle populations, cumulative
surface water deliveries, depth to groundwater, drainage, organic matter, and distance to river. Standard
errors are clustered by sub-basin; *p < 0.10, **p < 0.05, ***p < 0.01.
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